Background: Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease.

Aim: This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD.

Methods: This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD.

Results: The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions.

Conclusion: With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115680266293416240515075450DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
dpp4 inhibitors
12
glp-1 analogues
12
alzheimer's
5
glp-1
5
glp-1/gip agonist
4
agonist intriguing
4
intriguing ultimate
4
ultimate remedy
4
remedy combating
4

Similar Publications

Several human disorders, including Alzheimer's disease (AD), are characterized by the aberrant formation of amyloid fibrils. In many cases, the amyloid core is flanked by disordered regions, known as fuzzy coat. The structural properties of fuzzy coats, and their interactions with their environments, however, have not been fully described to date.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.

View Article and Find Full Text PDF

Functional proteins/peptides targeting to clear Amyloid-β for Alzheimer's disease therapy.

Chembiochem

January 2025

China Pharmaceutical University, Department of Pharmaceutical Science, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, CHINA.

Alzheimer's disease (AD) is a significant neurodegenerative disorder primarily affecting individuals over the age of 65. It is characterized by impairments in memory, thinking, analytical judgment, visuospatial recognition, and mood. In recent years, the development of protein and peptide drugs targeting amyloid-beta (Aβ) has gained momentum, with several therapies entering clinical trials and even receiving marketing approval.

View Article and Find Full Text PDF

The large majority of Alzheimer's disease (AD) cases are sporadic with unknown genetic causes. In contrast, only a small percentage of AD cases are familial, with known genetic causes. Paradoxically, there are only few validated mouse models of sporadic AD but many of familial AD.

View Article and Find Full Text PDF

Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!