Fibrous networks such as collagen are common in biological systems. Recent theoretical and experimental efforts have shed light on the mechanics of single component networks. Most real biopolymer networks, however, are composites made of elements with different rigidity. For instance, the extracellular matrix in mammalian tissues consists of stiff collagen fibers in a background matrix of flexible polymers such as hyaluronic acid (HA). The interplay between different biopolymer components in such composite networks remains unclear. In this work, we use 2D coarse-grained models to study the nonlinear strain-stiffening behavior of composites. We introduce a local volume constraint to model the incompressibility of HA. We also perform rheology experiments on composites of collagen with HA. Theoretically and experimentally, we demonstrate that the linear shear modulus of composite networks can be increased by approximately an order of magnitude above the corresponding moduli of the pure components. Our model shows that this synergistic effect can be understood in terms of the local incompressibility of HA, which acts to suppress density fluctuations of the collagen matrix with which it is entangled.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/s10189-024-00422-xDOI Listing

Publication Analysis

Top Keywords

local incompressibility
8
biopolymer networks
8
composite networks
8
networks
6
effects local
4
incompressibility rheology
4
rheology composite
4
composite biopolymer
4
networks fibrous
4
fibrous networks
4

Similar Publications

Large eddy simulations are a popular method for turbulent simulations because of their accuracy and efficiency. In this paper, a coupling algorithm is proposed that combines nonequilibrium moments (NM) and the volumetric strain-stretching (VSS) model within the framework of the lattice Boltzmann method (LBM). This algorithm establishes a relation between the NM and the eddy viscosity by using a special calculation form of the VSS model and Chapman-Enskog analysis.

View Article and Find Full Text PDF

We present accurate and mathematically consistent formulations of a diffuse-interface model for two-phase flow problems involving rapid evaporation. The model addresses challenges including discontinuities in the density field by several orders of magnitude, leading to high velocity and pressure jumps across the liquid-vapor interface, along with dynamically changing interface topologies. To this end, we integrate an incompressible Navier-Stokes solver combined with a conservative level-set formulation and a regularized, i.

View Article and Find Full Text PDF

Vertical bending and aerodynamic performance in flying snake-inspired aerial undulation.

Bioinspir Biomim

November 2024

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22093, United States of America.

This paper presents a numerical investigation into the aerodynamic characteristics and fluid dynamics of a flying snake-like model employing vertical bending locomotion during aerial undulation in steady gliding. In addition to its typical horizontal undulation, the modeled kinematics incorporates vertical undulations and dorsal-to-ventral bending movements while in motion. Using a computational approach with an incompressible flow solver based on the immersed-boundary method, this study employs topological local mesh refinement mesh blocks to ensure the high resolution of the grid around the moving body.

View Article and Find Full Text PDF

Determination of the high-pressure domain of stability of BeSiO and characterization of its crystal structure and properties.

Dalton Trans

November 2024

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100, Valencia, Spain.

Article Synopsis
  • Researchers used density-functional theory to study the stability of beryllium metasilicate (BeSiO) and found it to be stable at pressures above 9 GPa, proposing the orthorhombic perovskite structure as the most stable form.
  • They provided detailed measurements for this structure, including specific unit-cell parameters and calculated the material's elastic properties, such as phonon frequencies and bulk modulus, which was determined to be 242 GPa.
  • The study also explored how BeSiO's unit-cell dimensions change under pressure, revealing its slight anisotropic compression and contributing to a better understanding of its mechanical behavior and bonding characteristics.
View Article and Find Full Text PDF

This work provides a comprehensive characterization of porcine myocardial tissue, combining true biaxial (TBx), simple triaxial shear (STS) and confined compression (CC) tests to analyze its elastic behavior under cyclic loads. We expanded this study to different zones of the ventricular free wall, providing insights into the local behavior along the longitudinal and radial coordinates. The aging impact was also assessed by comparing two age groups (4 and 8 months).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!