This study aims to develop an AI-enhanced methodology for the expedited and accurate diagnosis of Multiple Sclerosis (MS), a chronic disease affecting the central nervous system leading to progressive impairment. Traditional diagnostic methods are slow and require substantial expertise, underscoring the need for innovative solutions. Our approach involves two phases: initially, extracting features from brain MRI images using first-order histograms, the gray level co-occurrence matrix, and local binary patterns. A unique feature selection technique combining the Sine Cosine Algorithm with the Sea-horse Optimizer is then employed to identify the most significant features. Utilizing the eHealth lab dataset, which includes images from 38 MS patients (mean age 34.1 ± 10.5 years; 17 males, 21 females) and matched healthy controls, our model achieved a remarkable 97.97% detection accuracy using the k-nearest neighbors classifier. Further validation on a larger dataset containing 262 MS cases (199 females, 63 males; mean age 31.26 ± 10.34 years) and 163 healthy individuals (109 females, 54 males; mean age 32.35 ± 10.30 years) demonstrated a 92.94% accuracy for FLAIR images and 91.25% for T2-weighted images with the Random Forest classifier, outperforming existing MS detection methods. These results highlight the potential of the proposed technique as a clinical decision-making tool for the early identification and management of MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637031 | PMC |
http://dx.doi.org/10.1038/s41598-024-61876-9 | DOI Listing |
JAMA Neurol
December 2024
Department of Health Sciences, University of Genoa, Genoa, Italy.
Inflammopharmacology
December 2024
Department of Research and Development, First Floor, Molecules Biolabs Private Limited, Commercial Building Kinfra, 3/634Konoor Road, Muringur, Vadakkummuri, Koratty, Mukundapuram, Thrissur, Kerala, 680309, India.
Palmitoylethanolamide (PEA) is emerging as a promising therapeutic agent for neuropathic and other pain-related conditions. This naturally occurring fatty acid has drawn interest because of its ability to regulate pain and inflammation. Initially identified in food sources, PEA has been the subject of extensive research to elucidate its properties, efficacy, and clinical applications.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
Background: Upper limb dysfunction is a common debilitating feature of relapsing-remitting multiple sclerosis (RRMS). We aimed to examine the longitudinal trajectory of the iPad®-based Manual Dexterity Test (MDT) and predictors of change over time.
Methods: We prospectively enrolled RRMS patients (limited to Expanded Disability Status Scale (EDSS) < 4).
Ann Neurol
December 2024
Department of Neurology, Washington University School of Medicine, St. Louis, MO.
Objective: Despite treatments which reduce relapses in multiple sclerosis (MS), many patients continue to experience progressive disability accumulation. MS is associated with metabolic disruptions and cerebral metabolic stress predisposes to tissue injury and possibly impaired remyelination. Additionally, myelin homeostasis is metabolically expensive and reliant on glycolysis.
View Article and Find Full Text PDFClin Exp Rheumatol
December 2024
Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Objectives: Systemic sclerosis (SSc), a chronic autoimmune disorder, characterised by local inflammation and progressive fibrosis. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) has been established as a key mediator in fibrotic processes across multiple organs, primarily through binding to its receptor, fibroblast growth factor-inducible 14 (Fn14). However, the precise role of the TWEAK/Fn14 signalling in SSc pathogenesis remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!