A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A tipping point in stable isotope composition of Antarctic meteoric waters during Cenozoic glaciation. | LitMetric

A tipping point in stable isotope composition of Antarctic meteoric waters during Cenozoic glaciation.

Nat Commun

Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA.

Published: May 2024

Triple oxygen isotopes of Cenozoic intrusive rocks emplaced along the Ross Sea coastline in Antarctica, reveal that meteoric-hydrothermal waters imprinted their stable isotope composition on mineral phases, leaving a clear record of oxygen and hydrogen isotope variations during the establishment of the polar cap. Calculated O- and H-isotope compositions of meteoric waters vary from -9 ± 2‰ and -92 ± 5‰ at 40 ± 0.6 Ma, to -30 and -234 ± 5‰ at 34 ± 1.9 Ma, and intersect the modern Global Meteoric Water Line. These isotopic variations likely depict the combined variations in temperature, humidity, and moisture source regions, resulting from rearrangement of oceanic currents and atmospheric cooling during the onset of continental ice cap. Here, we report a paleo-climatic proxy based on triple oxygen geochemistry of crystalline rocks that reveals changes in the hydrological cycle. We discuss the magnitude of temperature changes at high latitudes during the Eocene-Oligocene climatic transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530553PMC
http://dx.doi.org/10.1038/s41467-024-48811-2DOI Listing

Publication Analysis

Top Keywords

stable isotope
8
isotope composition
8
meteoric waters
8
triple oxygen
8
tipping point
4
point stable
4
composition antarctic
4
antarctic meteoric
4
waters cenozoic
4
cenozoic glaciation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!