Silicon-based quantum emitters are candidates for large-scale qubit integration due to their single-photon emission properties and potential for spin-photon interfaces with long spin coherence times. Here, we demonstrate local writing and erasing of selected light-emitting defects using femtosecond laser pulses in combination with hydrogen-based defect activation and passivation at a single center level. By choosing forming gas (N/H) during thermal annealing of carbon-implanted silicon, we can select the formation of a series of hydrogen and carbon-related quantum emitters, including T and C centers while passivating the more common G-centers. The C center is a telecom S-band emitter with promising optical and spin properties that consists of a single interstitial carbon atom in the silicon lattice. Density functional theory calculations show that the C center brightness is enhanced by several orders of magnitude in the presence of hydrogen. Fs-laser pulses locally affect the passivation or activation of quantum emitters with hydrogen for programmable formation of selected quantum emitters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130136 | PMC |
http://dx.doi.org/10.1038/s41467-024-48714-2 | DOI Listing |
Nat Commun
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.
View Article and Find Full Text PDFPhys Med Biol
January 2025
National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, JAPAN.
PET has become an important clinical modality but is limited to imaging positron emitters. Recently, PET imaging withZr, which has a half-life of 3 days, has attracted much attention in immuno-PET to visualize immune cells and cancer cells by targeting specific antibodies on the cell surface. However,Zr emits a single gamma ray at 909 keV four times more frequently than positrons, causing image quality degradation in conventional PET.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are preferred for their high efficiency and high colour purity in organic light-emitting diodes (OLEDs). However, the design strategies of MR-TADF emitters in the red region are very limited. Herein, we propose a concept for a paradigm shift in orange-red/deep-red MR emitters by linking the outer phenyl groups in a classical MR framework through intramolecular sulfur (S) locks.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA.
Surface defect-induced photoluminescence blinking and photodarkening are ubiquitous in lead halide perovskite quantum dots. Despite efforts to stabilize the surface by chemically engineering ligand binding moieties, blinking accompanied by photodegradation still poses barriers to implementing perovskite quantum dots in quantum emitters. To date, ligand tail engineering in the solid state has rarely been explored for perovskite quantum dots.
View Article and Find Full Text PDFNat Commun
January 2025
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Solutions for scalable, high-performance optical control are important for the development of scaled atom-based quantum technologies. Modulation of many individual optical beams is central to applying arbitrary gate and control sequences on arrays of atoms or atom-like systems. At telecom wavelengths, miniaturization of optical components via photonic integration has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!