A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Composition regulates dissolved organic matter adsorption onto iron (oxy)hydroxides and its competition with phosphate: Implications for organic carbon and phosphorus immobilization in lakes. | LitMetric

Composition regulates dissolved organic matter adsorption onto iron (oxy)hydroxides and its competition with phosphate: Implications for organic carbon and phosphorus immobilization in lakes.

J Environ Sci (China)

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: October 2024

Dissolved organic matter (DOM) is a heterogeneous pool of compounds and exhibits diverse adsorption characteristics with or without phosphorous (P) competition. The impacts of these factors on the burial and mobilization of organic carbon and P in aquatic ecosystems remain uncertain. In this study, an algae-derived DOM (ADOM) and a commercially available humic acid (HA) with distinct compositions were assessed for their adsorption behaviors onto iron (oxy)hydroxides (FeOx), both in the absence and presence of phosphate. ADOM contained less aromatics but more protein-like and highly unsaturated structures with oxygen compounds (HUSO) than HA. The adsorption capacity of FeOx was significantly greater for ADOM than for HA. Protein-like and HUSO compounds in ADOM and humic-like compounds and macromolecular aromatics in HA were preferentially adsorbed by FeOx. Moreover, ADOM demonstrated a stronger inhibitory effect on phosphate adsorption than HA. This observation suggests that the substantial release of autochthonous ADOM by algae could elevate internal P loading and pose challenges for the restoration of restore eutrophic lakes. The presence of phosphate suppressed the adsorption of protein-like compounds in ADOM onto FeOx, resulting in an increase in the relative abundance of protein-like compounds and a decrease in the relative abundance of humic-like compounds in post-adsorption ADOM. In contrast, phosphate exhibited no discernible impact on the compositional fractionation of HA. Collectively, our results show the source-composition characters of DOM influence the immobilization of both DOM and P in aquatic ecosystems through adsorption processes. The preferential adsorption of proteinaceous compounds within ADOM and aromatics within HA highlights the potential for the attachment with FeOx to diminish the original source-specific signatures of DOM, thereby contributing to the shared DOM characteristics observed across diverse aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2023.07.038DOI Listing

Publication Analysis

Top Keywords

compounds adom
12
adom
9
dissolved organic
8
organic matter
8
adsorption
8
iron oxyhydroxides
8
organic carbon
8
compounds
8
aquatic ecosystems
8
presence phosphate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!