Ethnopharmacological Relevance: Casearia sylvestris var. lingua (Cambess.) Eichler, a member of the Salicaceae family, holds a prominent place in traditional medicine across various cultures due to its versatile therapeutic properties. Historically, indigenous communities have utilized different parts of the plant, including leaves, bark, and roots, to address a wide array of health conditions. Traditional uses of C. sylvestris var. lingua encompasses the treatment of gastrointestinal disorders, respiratory infections, wound healing, inflammation, and stomach ulcers. Pharmacological studies have demonstrated the plant's antimicrobial, anti-inflammatory, antioxidant, analgesic, gastroprotective, and immunomodulatory effects. This signifies the first scientific validation report for C. sylvestris var. lingua regarding its effectiveness against ulcerative colitis. The report aims to affirm the traditional use of this plant through pre-clinical experiments.
Aim Of The Research: This work uses an aqueous extract from C. sylvestris var. lingua leaves (AECs) to evaluate the acute anti-ulcerative colitis efficacy in rat and HT-29 (human colorectal cancer cell line) models.
Methods: To determine the secondary metabolites of AECs, liquid chromatography with a diode array detector (LC-DAD) study was carried out. 2,4,6-trinitrobenzenesulfonic acid (TNBS, 30 mg/0.25 mL EtOH 30% v/v) was used as an enema to cause acute colitis. Three days were spent giving the C. sylvestris var. lingua extract orally by gavage at dosages of 3, 30, and 300 mg/kg. The same route was used to deliver distilled water to the vehicle and naïve groups. After the animals were sacrificed on the fourth day, intestinal tissues were taken for histological examination and evaluation of biochemical tests such as those measuring superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA), nitrite/nitrate, myeloperoxidase (MPO) activity. Additionally, interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin 10 (IL-10), were conducted on the intestinal tissues. Additionally, an MTT assay was used to evaluate the effect of AECs on the viability of HT-29 cells. Additionally, a molecular docking study was carried out to compare some potential target proteins with identified chemicals found in AECs.
Results: LC-DAD analysis identified five compounds (caffeic acid, ellagic acid, ferulic acid, gallic acid, and quercetin) in AECs. Pre-administration of AECs (3; 30; 300 mg/kg) and mesalazine (500 mg/kg) reduced macroscopic scores (55%, 47%, 45%, and 52%, p < 0.001) and ulcerated areas (70.3%, 70.5%, 57%, and 56%, p < 0.001), respectively. It also increased SOD, GSH, and CAT activities (p < 0.01), while decreasing MDA (p < 0.001), nitrite/nitrate (p < 0.05), and MPO (p < 0.001) activities compared to the colitis group. Concerning inflammatory markers, significant modulations were observed: AECs (3, 30, and 300 mg/kg) lowered levels of IL-1β and TNF-α (p < 0.001) and increased IL-10 levels (p < 0.001) compared to the colitis groups. The viability of HT-29 cells was suppressed by AECs with an IC of 195.90 ± 0.01 μg/mL (48 h). During the molecular docking analysis, quercetin, gallic acid, ferulic acid, caffeic acid, and ellagic acid demonstrated consistent binding affinities, forming stable interactions with the 3w3l (TLR8) and the 3ds6 (MAPK14) complexes.
Conclusion: These results imply that the intestinal mucogenic, anti-inflammatory, and antioxidant properties of the C. sylvestris var. lingua leaf extract may be involved in its therapeutic actions for ulcerative colitis. The results of the in silico study point to the possibility of quercetin and ellagic acid interacting with P38 and TLR8, respectively, in a beneficial way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2024.118393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!