Investigating the impact of common migration substances found in milk packaging on proteases: A multispectral and molecular docking approach.

Spectrochim Acta A Mol Biomol Spectrosc

College of Packaging Engineering, Jinan University, Zhuhai, Guangdong 519070, China; Packaging Engineering Institute, Jinan University, Zhuhai, Guangdong 519070 China; Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, Zhuhai, Guangdong 519070, China. Electronic address:

Published: October 2024

The effects of common migration substances in milk packaging on digestive protease were studied. We choose the common migrants found in eight types of multi-layer composite milk packaging. Enzyme activity experiments revealed that pepsin activity decreased by approximately 18 % at 500 μg/mL of stearic acid and stearamide treatment, while trypsin activity decreased by approximately 18 % only by stearic acid treatment (500 μg/mL). Subsequently, fluorescence spectroscopy, circular dichroism spectroscopy, and molecular docking technology were employed to investigate the inhibition mechanism of protease activity by migrating substances in three systems: stearic acid-trypsin, stearic acid-pepsin, and stearamide-pepsin. Results showed that the inhibitory effect of stearic acid on trypsin is a reversible mixed inhibition, whereas the inhibitory effects of stearic acid and stearamide on pepsin are non-competitive. In all three systems, ΔH < 0, ΔS < 0, and ΔG < 0, indicating the binding process between the migrant and the protease is a spontaneous exothermic process primarily driven by hydrogen bonding and van der Waals forces. In addition, their binding constants are all around 10 L/moL, indicating that there are moderate binding affinities exist between migrants and proteases. The binding process results in the quenching of the protease's endogenous fluorescence and induces alterations in the enzyme's secondary structure. Synchronized fluorescence spectroscopy showed that stearic acid enhanced the hydrophobicity near the Tyr residue of trypsin. The molecular docking results indicated that the binding affinity of stearic acid-trypsin, stearic acid-pepsin, and stearamide-pepsin was -22.51 kJ/mol, -12.35 kJ/mol, -19.28 kJ/mol respectively, which consistent with the trend in the enzyme activity results. This study can provide references for the selection of milk packaging materials and the use of processing additives, ensuring food health and safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124517DOI Listing

Publication Analysis

Top Keywords

stearic acid
16
milk packaging
12
common migration
8
migration substances
8
substances milk
8
molecular docking
8
activity decreased
8
decreased 18 %
8
acid stearamide
8
three systems
8

Similar Publications

In the present study, the nematicidal and fungicidal activity of the biosurfactant (BS) produced by the strain Serratia ureilytica UTS was evaluated. The highest mortality of J2 juveniles of the nematode Nacobbus aberrans was 92.3% at a concentration of 30 mg/mL.

View Article and Find Full Text PDF

Study of hydrophobic cemented paste backfill (H-CPB) to prevent sulphate attack.

Heliyon

November 2024

Department of Mining Engineering, Faculty of Engineering, Hadimkoy Campus, Istanbul University - Cerrahpasa, 34500, Istanbul, Turkiye.

One of the challenges encountered in mining is acid mine drainage (AMD) in sulphurous ores in response to rainfall and groundwater. CPB one of the most prevalent waste management systems addresses this issue today. Nevertheless, in the long term, the concretion in CPB may become ineffective because of external factors, such as groundwater and rainfall.

View Article and Find Full Text PDF

Hybrid in-situ and ex-situ hydrolysis of catalytic epoxidation neem oil via a peracid mechanism.

Sci Rep

January 2025

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Johor, Kampus Pasir Gudang, Masai Johor, 81750, Malaysia.

The depletion of oil reserves and their price and availability volatility raise researchers' concerns about renewable resources for epoxidized material. This study aims to produce in situ and ex-situ hydrolyzed dihydroxy stearic acid via the epoxidation of neem oil. Epoxidized neem oil was synthesized using in situ-generated performic acid.

View Article and Find Full Text PDF

It is essential to understand the modification mechanism of hydrophobicity nano-CaCO to their potential application in different fields of chemistry. However, the water absorption of hydrophobicity nano-CaCO is seldom studied. In this study, Raman, BET and TGA experiments were performed on nano-CaCO samples to obtain surfactants contents and microstructure characteristics.

View Article and Find Full Text PDF

Fatty acid (FA), tocopherol, and phytosterol profiles are used in avocado oil purity standards. However, blends with other oils can mimic the profile of pure avocado oil, resulting in similar ranges for these molecules. Therefore, fatty alcohol esters (FAEs) uniquely of spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!