AI Article Synopsis

  • - NOSO-95A, an antibiotic from entomopathogenic Xenorhabdus bacteria, is the first of the odilorhabdin class, showing broad-spectrum activity and paving the way for the synthetic derivative NOSO-502, which may combat antibiotic resistance.
  • - Although the action of odilorhabdins has been studied, their biosynthesis was not well understood until researchers produced NOSO-95A in E. coli by refactoring its biosynthetic gene cluster (BGC).
  • - By applying NRPS engineering techniques, the team explored biosynthetic pathways and discovered mechanisms for creating unusual amino acids, which could help develop new odilorhabdin analogues with better therapeutic properties.

Article Abstract

The recently identified natural product NOSO-95A from entomopathogenic Xenorhabdus bacteria, derived from a biosynthetic gene cluster (BGC) encoding a non-ribosomal peptide synthetase (NRPS), was the first member of the odilorhabdin class of antibiotics. This class exhibits broad-spectrum antibiotic activity and inspired the development of the synthetic derivative NOSO-502, which holds potential as a new clinical drug by breaking antibiotic resistance. While the mode of action of odilorhabdins was broadly investigated, their biosynthesis pathway remained poorly understood. Here we describe the heterologous production of NOSO-95A in Escherichia coli after refactoring the complete BGC. Since the production titer was low, NRPS engineering was applied to uncover the underlying biosynthetic principles. For this, modules of the odilorhabdin NRPS fused to other synthetases were co-expressed with candidate hydroxylases encoded in the BGC allowing the characterization of the biosynthesis of three unusual amino acids and leading to the identification of a prodrug-activation mechanism by deacylation. Our work demonstrates the application of NRPS engineering as a blueprint to mechanistically elucidate large or toxic NRPS and provides the basis to generate novel odilorhabdin analogues with improved properties in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202406389DOI Listing

Publication Analysis

Top Keywords

nrps engineering
12
biosynthetic gene
8
gene cluster
8
nrps
6
investigation odilorhabdin
4
odilorhabdin biosynthetic
4
cluster nrps
4
engineering identified
4
identified natural
4
natural product
4

Similar Publications

Engineering of nonribosomal peptide synthetases (NRPSs) could transform the production of bioactive natural product derivatives. A number of recent reports have described the engineering of NRPSs without marked reductions in yield. Comparative analysis of evolutionarily related NRPSs can provide insights regarding permissive fusion sites for engineering where recombination may occur during evolutionary processes.

View Article and Find Full Text PDF

Background: The marine environment boasts distinctive physical, chemical, and biological characteristics. While numerous studies have delved into the microbial ecology and biological potential of the marine environment, exploration of genetically encoded, deep-sea sourced secondary metabolites remains scarce. This study endeavors to investigate marine bioproducts derived from deep-sea water samples at a depth of 1,000 m in the Java Trench, Indonesia, utilizing both culture-dependent and whole-genome sequencing methods.

View Article and Find Full Text PDF

Genome Sequencing and Metabolic Potential Analysis of .

J Fungi (Basel)

December 2024

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

is an edible and medicinal macrofungus with significant biological activity and broad pharmaceutical prospects that has received increasing attention in recent years. Although it is an important resource for macrofungi, knowledge of it remains limited. In this study, we sequenced, de novo assembled, and annotated the whole genome of using a PacBio Sequel II sequencer.

View Article and Find Full Text PDF

Fungal secondary metabolites (SMs) have broad applications in biomedicine, biocontrol, and the food industry. In this study, whole-genome sequencing and annotation of were conducted, followed by comparative genomic analysis with 11 other species of Polyporales to examine genomic variations and secondary metabolite biosynthesis pathways. Additionally, transcriptome data were used to analyze the differential expression of polyketide synthase (PKS), terpene synthase (TPS) genes, and transcription factors (TFs) under different culture conditions.

View Article and Find Full Text PDF

The growing threat of antimicrobial resistance (AMR) has underlined the need for a sustained supply of novel antimicrobial agents. Endophyte microorganism that reside within plant tissues as symbionts have been the source of potential antimicrobial substances. However, many novel and potent antimicrobials are yet to be discovered from these endophytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!