EDA2R-NIK signaling in cancer cachexia.

Curr Opin Support Palliat Care

Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.

Published: September 2024

Purpose Of Review: Cachexia is a debilitating condition causing weight loss and skeletal muscle wasting that negatively influences treatment and survival of cancer patients. The objective of this review is to describe recent discoveries on the role of a novel signaling pathway involving ectodysplasin A2 receptor (EDA2R) and nuclear factor κB (NFκB)-inducing kinase (NIK) in muscle atrophy.

Recent Findings: Studies identified tumor-induced upregulation of EDA2R expression in muscle tissues in pre-clinical cachexia models and patients with various cancers. Activation of EDA2R by its ligand promoted atrophy in cultured myotubes and muscle tissue, which depended on NIK activity. The non-canonical NFκB pathway via NIK also stimulated muscle atrophy. Mice lacking EDA2R or NIK were protected from muscle loss due to tumors. Tumor-induced cytokine oncostatin M (OSM) upregulated EDA2R expression in muscles whereas OSM receptor-deficient mice were resistant to muscle wasting.

Summary: Recent discoveries revealed a mechanism involving EDA2R-NIK signaling and OSM that drives cancer-associated muscle loss, opening up new directions for designing anti-cachexia treatments. The therapeutic potential of targeting this mechanism to prevent muscle loss should be further investigated. Future research should also explore broader implications of the EDA2R-NIK pathway in other muscle wasting diseases and overall muscle health.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SPC.0000000000000705DOI Listing

Publication Analysis

Top Keywords

muscle loss
12
muscle
11
eda2r-nik signaling
8
muscle wasting
8
eda2r expression
8
eda2r
5
signaling cancer
4
cancer cachexia
4
cachexia purpose
4
purpose review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!