Over the past decade, advancements in technology and methodology within the field of cryogenic electron microscopy (cryo-EM) single-particle analysis (SPA) have substantially improved our capacity for high-resolution structural examination of biological macromolecules. This advancement has ushered in a new era of molecular insights, replacing X-ray crystallography as the dominant method and providing answers to longstanding questions in biology. Since cryo-EM does not depend on crystallization, which is a significant limitation of X-ray crystallography, it captures particles of varying quality. Consequently, the selection of particles is crucial, as the quality of the selected particles directly influences the resolution of the reconstructed density map. An innovative iterative approach for particle selection, termed CryoSieve, significantly improves the quality of reconstructed density maps by effectively reducing the number of particles in the final stack. Experimental evidence shows that this method can eliminate the majority of particles in final stacks, resulting in a notable enhancement in the quality of density maps. This article outlines the detailed workflow of this approach and showcases its application on a real-world dataset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/66617 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!