A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of scatter radiation on spectral quantification performance of first- and second-generation dual-layer spectral computed tomography. | LitMetric

Objective: To assess the impact of scatter radiation on quantitative performance of first and second-generation dual-layer spectral computed tomography (DLCT) systems.

Method: A phantom with two iodine inserts (1 and 2 mg/mL) configured to intentionally introduce high scattering conditions was scanned with a first- and second-generation DLCT. Collimation widths (maximum of 4 cm for first generation and 8 cm for second generation) and radiation dose levels were varied. To evaluate the performance of both systems, the mean CT numbers of virtual monoenergetic images (MonoEs) at different energies were calculated and compared to expected values. MonoEs at 50  versus 150 keV were plotted to assess material characterization of both DLCTs. Additionally, iodine concentrations were determined, plotted, and compared against expected values. For each experimental scenario, absolute errors were reported.

Results: An experimental setup, including a phantom design, was successfully implemented to simulate high scatter radiation imaging conditions. Both CT scanners illustrated high spectral accuracy for small collimation widths (1 and 2 cm). With increased collimation (4 cm), the second-generation DLCT outperformed the earlier DLCT system. Further, the spectral performance of the second-generation DLCT at an 8 cm collimation width was comparable to a 4 cm collimation on the first-generation DLCT. A comparison of the absolute errors between both systems at lower energy MonoEs illustrates that, for the same acquisition parameters, the second-generation DLCT generated results with decreased errors. Similarly, the maximum error in iodine quantification was less with second-generation DLCT (0.45  and 0.33 mg/mL for the first and second-generation DLCT, respectively).

Conclusion: The implementation of a two-dimensional anti-scatter grid in the second-generation DLCT improves the spectral quantification performance. In the clinical routine, this improvement may enable additional clinical benefits, for example, in lung imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244683PMC
http://dx.doi.org/10.1002/acm2.14383DOI Listing

Publication Analysis

Top Keywords

second-generation dlct
28
scatter radiation
12
dlct
10
second-generation
9
impact scatter
8
spectral quantification
8
quantification performance
8
first- second-generation
8
second-generation dual-layer
8
dual-layer spectral
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!