Objective: This study aimed to assess the effects of commonly consumed hot drinks on the force decay of orthodontic elastomeric chains.
Methods: This experimental study evaluated 375 pieces of elastomeric chains with six rings placed on a jig. Four rings were stretched by 23.5 mm corresponding to the approximate distance between the canine and the second premolar. Fifteen pieces served as reference samples at time zero, and 360 pieces were randomized into four groups: control, hot water, hot tea, and hot coffee. Each group was further divided into six subgroups (n = 15) according to the different exposure periods. The specimens in the experimental groups were exposed to the respective solutions at 65.5°C four times per day for 90 seconds at 5-second intervals. The control group was exposed to artificial saliva at 37°C. The force decay of the samples was measured at 1, 2, 7, 14, 21, and 28 days using a universal testing machine. Data were analyzed using repeated-measures analysis of variance.
Results: Maximum force decay occurred on day 1 in all groups. The minimum force was recorded in the control group, followed by the tea, coffee, and hot water groups on day 1. At the other time points, the minimum force was observed in the tea group, followed by the control, coffee, and hot water groups.
Conclusions: Patients can consume hot drinks without concern about any adverse effect on force decay of the orthodontic elastomeric chains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129932 | PMC |
http://dx.doi.org/10.4041/kjod23.160 | DOI Listing |
Mil Med
January 2025
Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, 00014, Finland.
Introduction: Oral health is a crucial factor for service safety among military pilots, but studies specifically on pilots are still very few in Finland. The aim of this study was to assess the oral health status of military student pilots compared to other conscripts of the same age group.
Materials And Methods: The data were collected during the oral health examinations of the annual class of the Pilot Reserve Officer Course students at the beginning of their duty at the Air Force Academy (N = 38).
Sports (Basel)
January 2025
DMeM, University of Montpellier, INRAE, 34000 Montpellier, France.
Background: Objective training load (TL) indexes used in resistance training lack physiological significance. This study was aimed to provide a muscle physiology-based approach for quantifying TL in resistance exercises (REs).
Methods: Following individual torque-velocity profiling, fifteen participants (11 healthy males, stature: 178.
J Hazard Mater
January 2025
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China. Electronic address:
Bubble-microplastic (MP) interaction is a significant process that changes the routes of MP circulation in marine environment and thereby determines the risk of MPs, which could be strongly influenced by natural organic matter (NOM) in oceans. However, the quantitative interaction mechanisms between bubbles and MPs under the effect of NOM remain elusive. Herein, bubble-MP interactions in simulated seawater were quantified at nanoscale based on atomic force microscope coupled with the Stokes-Reynold-Young-Laplace model.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
Molecular-scale electronics focuses on understanding and utilizing charge transport through individual molecules. A key issue is the charge transport capability of a single molecule characterized by current decay. We visualize the on-site formation of conjugated polymers with varying carbon-carbon bond orders by using scanning tunneling microscopy and noncontact atomic force microscopy.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia.
In this research, the photophysical properties of metformin hydrochloride (MF-HCl) were studied using spectroscopic and molecular docking techniques. The interaction between metformin hydrochloride and caffeine is essential for understanding the pharmacokinetics of metformin, particularly in populations with high caffeine consumption. Metformin is a first-line medication for managing type 2 diabetes, while caffeine is a widely consumed dietary stimulant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!