A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanically-driven growth and competition in a Voronoi model of tissues. | LitMetric

Mechanically-driven growth and competition in a Voronoi model of tissues.

ArXiv

Department of Physics, Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA.

Published: May 2024

The mechanisms leading cells to acquire a fitness advantage and establish themselves in a population are paramount to understanding the development and growth of cancer. Although there are many works that study separately either the evolutionary dynamics or the mechanics of cancer, little has been done to couple evolutionary dynamics to mechanics. To address this question, we study a confluent model of tissue using a Self-Propelled Voronoi (SPV) model with stochastic growth rates that depend on the mechanical variables of the system. The SPV model is an out-of-equilibrium model of tissue derived from an energy functional that has a jamming/unjamming transition between solid-like and liquid-like states. By considering several scenarios of mutants invading a resident population in both phases, we determine the range of parameters that confer a fitness advantage and show that the preferred area and perimeter are the most relevant ones. We find that the liquid-like state is more resistant to invasion and show that the outcome of the competition can be determined from the simulation of a non-growing mixture. Moreover, a mean-field approximation can accurately predict the fate of a mutation affecting mechanical properties of a cell. Our results can be used to infer evolutionary dynamics from tissue images, understand cancer-suppressing effects of tissue mechanics, and even search for mechanics-based therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118596PMC

Publication Analysis

Top Keywords

evolutionary dynamics
12
fitness advantage
8
dynamics mechanics
8
model tissue
8
spv model
8
model
5
mechanically-driven growth
4
growth competition
4
competition voronoi
4
voronoi model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!