mRNA therapy is the intracellular delivery of messenger RNA (mRNA) to produce desired therapeutic proteins. Developing strategies for local mRNA delivery is still required where direct intra-articular injections are inappropriate for targeting a specific tissue. The mRNA delivery efficiency depends on protecting nucleic acids against nuclease-mediated degradation and safe site-specific intracellular delivery. Herein, we report novel mRNA-releasing matrices based on RGD-moiety-rich gelatin methacryloyl (GelMA) microporous annealed particle (MAP) scaffolds. GelMA concentration in aerogel-based microgels (μgels) produced through a microfluidic process, MAP stiffnesses, and microporosity are crucial parameters for cell adhesion, spreading, and proliferation. After being loaded with mRNA complexes, MAP scaffolds composed of 10 % GelMA μgels display excellent cell viability with increasing cell infiltration, adhesion, proliferation, and gene transfer. The intracellular delivery is achieved by the sustained release of mRNA complexes from MAP scaffolds and cell adhesion on mRNA-releasing scaffolds. These findings highlight that hybrid systems can achieve efficient protein expression by delivering mRNA complexes, making them promising mRNA-releasing biomaterials for tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126212PMC
http://dx.doi.org/10.1002/agt2.464DOI Listing

Publication Analysis

Top Keywords

mrna delivery
12
intracellular delivery
12
map scaffolds
12
mrna complexes
12
gelatin methacryloyl
8
mrna
8
cell adhesion
8
complexes map
8
delivery
6
scaffolds
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!