Secondary muscle weakness in critically ill patients like intensive care unit (ICU)-associated weakness is frequently noted in patients with prolonged mechanical ventilation and ICU stay. It can be a result of critical illness, myopathy, or neuropathy. Although ICU-acquired weakness (ICU-AW) has been known for a while, there is still no effective treatment for it. Therefore, prevention of ICU-AW becomes the utmost priority, and knowing the risk factors is crucial. Nevertheless, the pathophysiology and the attributing causes are complex for ICU-AW, and proper delineation and formulation of a preventive strategy from such vast, multifaceted data are challenging. Artificial intelligence has recently helped healthcare professionals understand and analyze such intricate data through deep machine learning. Hence, using such a strategy also helps in knowing the risk factors and their weight as contributors, applying them in formulating a preventive path for ICU-AW worth trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126887 | PMC |
http://dx.doi.org/10.7759/cureus.58963 | DOI Listing |
Neuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
BMC Musculoskelet Disord
January 2025
General Hospital of Ningxia Medical University, Ningxia, 750004, China.
The case of Lumbar spinal stenosis (LSS) combined with tophi due to gout is rarely reported. In the course of our clinic work, we encountered a young male patient who was diagnosed with a history of gout for 5 years and was targeted as LSS combined with gouty tophi, and we would like to share this case. In addition, in order to further investigate the deep mechanism of LSS associated with gout, we obtained the intersecting genes of the two diseases based on a machine learning approach by obtaining the dataset GSE113212 related to LSS from the Gene Expression Omnibus (GEO) database, and the genes related to gout from the human gene database.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.
View Article and Find Full Text PDFSci Rep
January 2025
University Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, 91191, France.
Recent advances highlight the limitations of classification strategies in machine learning that rely on a single data source for understanding, diagnosing and predicting psychiatric syndromes. Moreover, approaches based solely on clinician labels often fail to capture the complexity and variability of these conditions. Recent research underlines the importance of considering multiple dimensions that span across different psychiatric syndromes.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India.
Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learning-based approach utilizing resected lung-tissue microbiome of AC and SCC patients for subtype classification. Differentially enriched taxa were identified using LEfSe, revealing ten potential microbial markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!