Periodontal diseases are widely spread, particularly in adults. Chitosan has non-toxicity and biocompatibility properties, as it has been studied in many studies in various surgical applications. This case report includes two female patients (aged 23 and 48) who were treated by the application of Chitosan gel 15% during open flap debridement in an aggregate of 26 periodontal pockets. Several clinical measurements were evaluated (probing depth, gingival recession, and bleeding on probing) for the treated periodontal pockets, between two periods, the first in baseline and then after six months. The results showed a reduction in probing depth of (3.30±0.27) after six months. The bleeding on probing also decreased from 84.61% to 0%. This case report concluded that the application of Chitosan gel 15% reduced pocket depth and bleeding on probing when applied in open flap debridement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126890PMC
http://dx.doi.org/10.7759/cureus.58965DOI Listing

Publication Analysis

Top Keywords

chitosan gel
12
gel 15%
12
case report
12
bleeding probing
12
application chitosan
8
open flap
8
flap debridement
8
periodontal pockets
8
probing depth
8
probing
5

Similar Publications

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Chitosan/squid ring teeth protein hydrogels for the controlled release of curcumin.

Int J Biol Macromol

December 2024

Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China; College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:

Biocompatible and degradable hydrogels are extensively utilized for the delivery and controlled release of bioactive agents. Chitosan/squid ring teeth protein (SRT) hydrogels (CH/SRTs) cross-linked by genipin were fabricated, and their gel properties and structural characteristics were analyzed across varying SRT contents. Additionally, the curcumin-release behavior of curcumin-loaded CH/SRTs (Cur-CH/SRTs) was evaluated.

View Article and Find Full Text PDF

Nose-to-brain delivery of lithium via a sprayable in situ-forming hydrogel composed of chelating starch nanoparticles.

J Control Release

December 2024

Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:

While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.

View Article and Find Full Text PDF

In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an optimal oleogel. MCT performed best, followed by soybean oil, which was chosen for its edibility and cost.

View Article and Find Full Text PDF

Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH)SO solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!