Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The specificity of scenarios and tasks in Unmanned Aerial Vehicles (UAV)-based maritime rescue poses challenges for detecting targets within images captured by drones in such environments. This study focuses on leveraging heuristic methods to extract data features from specific UAV maritime rescue images to optimize the generation of anchor boxes in detection models. Experiments conducted on the large-scale SeaDronesSee maritime rescue dataset, using the MMDetection object detection framework, demonstrated that the optimized anchor boxes, improved model performance by 48.9% to 62.8% compared to the framework's default configuration, with the most proficient model surpassing the official highest SeaDronesSee baseline by over 49.3%. Further analysis of the results revealed the variation in detection difficulty for different objects within the dataset and identified the reasons behind these differences. The methodology and analysis presented in this study hold promise for optimizing UAV-based maritime rescue object detection models as well as refining data analysis and enhancement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126793 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e30485 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!