Purpose: The primary objective of this study was to develop an innovative nanomedicine-based therapeutic strategy to alleviate Postoperative Neurocognitive Disorder (PND) in patients undergoing surgery.

Patients And Methods: To achieve this goal, polydopamine-coated Kaempferol-loaded Metal-Organic Framework nanoparticles (pDA/KAE@ZIF-8) were synthesized and evaluated. The study involved encapsulating Kaempferol (KAE) within ZIF-8 nanoparticles, followed by coating with polydopamine (PDA) to enhance biocompatibility and targeted delivery. The characterization of these nanoparticles (NPs) was conducted using various techniques including Scanning Electron Microscopy, Fourier-Transform Infrared Spectroscopy, X-ray Diffraction, and Ultraviolet-Visible spectroscopy. The efficacy of pDA/KAE@ZIF-8 NPs was tested in both in vitro and in vivo models, specifically focusing on their ability to penetrate the blood-brain barrier and protect neuronal cells against oxidative stress.

Results: The study found that pDA/KAE@ZIF-8 NPs efficiently penetrated the blood-brain barrier and were significantly taken up by neuronal cells. These nanoparticles demonstrated remarkable Reactive Oxygen Species (ROS) scavenging capabilities and stability under physiological conditions. In vitro studies showed that pDA/KAE@ZIF-8 NPs provided protection to HT-22 neuronal cells against HO-induced oxidative stress, reduced the levels of pro-inflammatory cytokines, and decreased apoptosis rates. In a PND mouse model, the treatment with pDA/KAE@ZIF-8 NPs significantly improved cognitive functions, surpassing the effects of KAE alone. This improvement was substantiated through behavioral tests and a noted reduction in hippocampal inflammation.

Conclusion: The findings from this study underscore the potential of pDA/KAE@ZIF-8 NPs as an effective nanotherapeutic agent for PND. This approach offers a novel direction in the postoperative care of elderly patients, with the potential to transform the therapeutic landscape for neurocognitive disorders following surgery. The application of nanotechnology in this context opens new avenues for more effective and targeted treatments, thereby improving the quality of life for patients suffering from PND.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127663PMC
http://dx.doi.org/10.2147/IJN.S455492DOI Listing

Publication Analysis

Top Keywords

pda/kae@zif-8 nps
20
neuronal cells
12
polydopamine-coated kaempferol-loaded
8
therapeutic strategy
8
postoperative neurocognitive
8
neurocognitive disorder
8
blood-brain barrier
8
pda/kae@zif-8
6
nps
6
nanoparticles
5

Similar Publications

Purpose: The primary objective of this study was to develop an innovative nanomedicine-based therapeutic strategy to alleviate Postoperative Neurocognitive Disorder (PND) in patients undergoing surgery.

Patients And Methods: To achieve this goal, polydopamine-coated Kaempferol-loaded Metal-Organic Framework nanoparticles (pDA/KAE@ZIF-8) were synthesized and evaluated. The study involved encapsulating Kaempferol (KAE) within ZIF-8 nanoparticles, followed by coating with polydopamine (PDA) to enhance biocompatibility and targeted delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!