A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing tropical cyclone intensity forecasting with explainable deep learning integrating satellite observations and numerical model outputs. | LitMetric

Tropical cyclone (TC) intensity change forecasting remains challenging due to the lack of understanding of the interactions between TC changes and environmental parameters, and the high uncertainties resulting from climate change. This study proposed hybrid convolutional neural networks (hybrid-CNN), which effectively combined satellite-based spatial characteristics and numerical prediction model outputs, to forecast TC intensity with lead times of 24, 48, and 72 h. The models were validated against best track data by TC category and phase and compared with the Korea Meteorological Administrator (KMA)-based TC forecasts. The hybrid-CNN-based forecasts outperformed KMA-based forecasts, exhibiting up to 22%, 110%, and 7% improvement in skill scores for the 24-, 48-, and 72-h forecasts, respectively. For rapid intensification cases, the models exhibited improvements of 62%, 87%, and 50% over KMA-based forecasts for the three lead times. Moreover, explainable deep learning demonstrated hybrid-CNN's potential in predicting TC intensity and contributing to the TC forecasting field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126939PMC
http://dx.doi.org/10.1016/j.isci.2024.109905DOI Listing

Publication Analysis

Top Keywords

kma-based forecasts
12
tropical cyclone
8
cyclone intensity
8
explainable deep
8
deep learning
8
model outputs
8
lead times
8
forecasts
5
enhancing tropical
4
intensity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!