Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, a rare autosomal recessive disorder, manifests with hypoglobulinemia and chromosomal instability accompanied by DNA hypomethylation. Pathological variants in the , , , or genes underlie its etiology. Activated lymphocytes from patients often display distinctive multiradial chromosomes fused via pericentromeric regions. Recent studies have provided deeper insights into how pathological variants in ICF-related proteins cause DNA hypomethylation and chromosome instability. However, the understanding of the molecular pathogenesis underlying immunodeficiency is still in its nascent stages. In the past half-decade, the roles of CDCA7, HELLS, and ZBTB24 in classical non-homologous end joining during double-strand DNA break repair and immunoglobulin class-switch recombination (CSR) have been unveiled. Nevertheless, given the decreased all classes of immunoglobulins in most patients, CSR deficiency alone cannot fully account for the immunodeficiency. The latest finding showing dysregulation of immunoglobulin signaling may provide a clue to understanding the immunodeficiency mechanism. While less common, a subgroup of patients exhibits T-cell abnormalities alongside B-cell anomalies, including reduced regulatory T-cells and increased effector memory T- and follicular helper T-cells. The dysregulation of immunoglobulin signaling in B-cells, the imbalance in T-cell subsets, and/or satellite RNA-mediated activation of innate immune response potentially explain autoimmune manifestations in a subset of patients. These findings emphasize the pivotal roles of ICF-related proteins in both B- and T-cell functions. ICF syndrome studies have illuminated many fundamental mechanisms. Further investigations will certainly continue to unveil additional mechanisms and their interplay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116680 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1405022 | DOI Listing |
J Investig Allergol Clin Immunol
November 2024
Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
Hum Mol Genet
November 2024
UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France.
Since its discovery as a causative gene of the Immunodeficiency with Centromeric instability and Facial anomalies syndrome, ZBTB24 has emerged as a key player in DNA methylation, immunity and development. By extensively analyzing ZBTB24 genomic functions in ICF-relevant mouse and human cellular models, we document here its multiple facets as a transcription factor, with key roles in immune response-related genes expression and also in early embryonic development. Using a constitutive Zbtb24 ICF-like mutant and an auxin-inducible degron system in mouse embryonic stem cells, we showed that ZBTB24 is recruited to centromeric satellite DNA where it is required to establish and maintain the correct DNA methylation patterns through the recruitment of DNMT3B.
View Article and Find Full Text PDFFront Immunol
October 2024
Key Laboratory of Drug Targeting and Drug Delivery of Ministry of Education (MOE), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, West China School of Pharmacy, Sichuan University, Chengdu, China.
J Clin Immunol
September 2024
Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey.
Hum Immunol
November 2024
Department of Allergy, Asthma and Inflammation, 1st Pediatric Clinic University of Athens, Childrens' Hospital 'Agia Sophia', Athens, Greece. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!