Phenological shifts due to changing climate are often highly species and context specific. Land-use practices such as mowing or grazing directly affect the phenology of grassland species, but it is unclear if plants are similarly affected by climate change in differently managed grassland systems such as meadows and pastures. Functional traits have a high potential to explain phenological shifts and might help to understand species-specific and land-use-specific phenological responses to changes in climate. In the large-scale field experiment (GCEF), we monitored the first flowering day, last flowering day, flowering duration, and day of peak flowering, of 17 herbaceous grassland species under ambient and future climate conditions, comparing meadows and pastures. Both climate and land use impacted the flowering phenology of plant species in species-specific ways. We did not find evidence for interacting effects of climate and land-use type on plant phenology. However, the data indicate that microclimatic and microsite conditions on meadows and pastures were differently affected by future climate, making differential effects on meadows and pastures likely. Functional traits, including the phenological niche and grassland utilization indicator values, explained species-specific phenological climate responses. Late flowering species and species with a low mowing tolerance advanced their flowering more strongly under future climate. Long flowering species and species following an acquisitive strategy (high specific leaf area, high mowing tolerance, and high forage value) advanced their flowering end more strongly and thus more strongly shortened their flowering under future climate. We associated these trait-response relationships primarily with a phenological drought escape during summer. Our results provide novel insights on how climate and land use impact the flowering phenology of grassland species and we highlight the role of functional traits in mediating phenological responses to climate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116844PMC
http://dx.doi.org/10.1002/ece3.11441DOI Listing

Publication Analysis

Top Keywords

functional traits
16
meadows pastures
16
future climate
16
climate
13
grassland species
12
flowering
11
species
9
plant species
8
climate land-use
8
phenological shifts
8

Similar Publications

Analyses of form-function relationships are widely used to understand links between morphology, ecology, and adaptation across macroevolutionary scales. However, few have investigated functional trade-offs and covariance within and between the skull, limbs, and vertebral column simultaneously. In this study, we investigated the adaptive landscape of skeletal form and function in carnivorans to test how functional trade-offs among these skeletal regions contribute to ecological adaptations and the topology of the landscape.

View Article and Find Full Text PDF

Examining ozone effects on the tropical C crop .

PeerJ

January 2025

College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University of North Queensland, Cairns, Queensland, Australia.

Ozone (O), a major air pollutant, can negatively impact plant growth and yield. While O impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O on sorghum, a C plant and the fifth most important cereal crop worldwide. We exposed grain sorghum ( cv.

View Article and Find Full Text PDF

Cold climate-driven convergent evolution among angiosperms.

Plant Commun

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University; Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University; Hangzhou 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms to sub-zero temperatures. We begin by introducing the research history of convergent and parallel evolution, defining all independent similarities as convergent evolution.

View Article and Find Full Text PDF

Periweissella beninensis LMG 25373, belonging to the recently established Periweissella genus, exhibits unique motility and high adhesion capabilities, indicating significant probiotic potential, including resilience under simulated gastrointestinal conditions. This study demonstrates for the first time that P. beninensis LMG 25373^T produces a dextran-type exopolysaccharide (EPS) with a distinctive high degree of branching (approximately 71 % of α-(1 → 6)-linkages and 29 % α-(1 → 3)-linkages).

View Article and Find Full Text PDF

The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!