The ability to sense saccharides in aqueous media has attracted much attention in multidisciplinary sciences because the detection of ultrahigh concentrations of sugar chains associated with serious diseases could lead to further health promotion. However, there are notable challenges. In this study, a rhodamine-modified Curdlan () chemosensor was synthesized that exhibited distinctive fluorescence "turn-on" responses. exhibited simultaneous sensitive and selective sensing of clinically useful acarbose with a good limit of detection (5 μM) from among those of the saccharides examined. The (chir)optical properties of were elucidated using UV/vis, fluorescence, excitation, and circular dichroism spectroscopies; lifetime measurements and morphological studies using atomic force and confocal laser scanning microscopy and dynamic light scattering techniques revealed that the fluorescence "turn-on" behavior originates from globule-to-coaggregation conversion upon insertion of the oligosaccharides in the dynamic Cur backbone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11112708PMC
http://dx.doi.org/10.1021/acsomega.4c01786DOI Listing

Publication Analysis

Top Keywords

aqueous media
8
fluorescence "turn-on"
8
fluorophore-probed curdlan
4
curdlan polysaccharide
4
polysaccharide chemosensor
4
chemosensor "turn-on"
4
"turn-on" oligosaccharide
4
oligosaccharide sensing
4
sensing aqueous
4
media ability
4

Similar Publications

Imidazole Cationic-Bridged Pillar[5]arene Polymer as a Recycle Adsorbent for Iodine Capture.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

Developing efficient and recyclable iodine adsorbents is crucial for addressing radioactive iodine pollution. An imidazole cation-bridged pillar[5]arene polymer (P5-P5I) was synthesized via a salt formation reaction. P5-P5I exhibited a high iodine vapor capture capacity of 2130.

View Article and Find Full Text PDF

Triclosan (TCS) is used as an antibacterial agent in various products. One of the major issues associated with TCS is its limited solubility in aqueous media, which can reduce its effectiveness against bacteria. In this study, we enhanced the aqueous solubility and antibacterial activity of TCS by using a re-dispersible emulsion powder stabilized with gold nanoparticles (GNPs).

View Article and Find Full Text PDF

This study aims to explore the development of natural bio-based amphiphilic block copolymers for drug delivery applications. We investigated block copolymers derived from tamarind seed xyloglucan and solanesol, focusing on their synthesis, structural analysis, aqueous self-assembly, and drug encapsulation. Specifically, xyloglucan hydrolysate segments with number-average degrees of polymerization (DPs) of between 8 and 44 (XOS, XMS, XMS, XMS, and XMS) were used as the hydrophilic blocks, whereas plant-sourced solanesol was selected as the hydrophobic segment.

View Article and Find Full Text PDF

New efficient and sustainable methods for the removal of malachite green (MG) from environmental media are needed. In this study, corn straw was co-pyrolyzed with montmorillonite under a variety of conditions (400, 500, 600, and 700 °C and 10-40 wt% montmorillonite), without any use of toxic chemicals, to produce a series of biochar-clay composites. Characteristics of the composites that make them promising contaminant sorbents include a uniform lamellar-particle micromorphology, enhanced mesoporous structure and surface area (53.

View Article and Find Full Text PDF

Polyoxometalates (POMs) are composed of nanometric metal-oxide anions and have rich solution chemistry. In this class, Keggin POMs have been identified as the most influential inorganic additives for aqueous nonionic soft matter systems. POMs being at the borderline of classical ions and charged colloids possess fascinating solution properties; the present work aims to delve deeper into the interactions between nanoions and nonionic soft matters from a spectroscopic point of view.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!