Metabolic syndrome is a condition characterized by metabolic alterations that culminate in chronic noncommunicable diseases of high morbidity and mortality, such as cardiovascular diseases, type 2 diabetes, nonalcoholic fatty liver disease, and colon cancer. Developing new therapeutic strategies with a multifactorial approach is important since current therapies focus on only one or two components of the metabolic syndrome. In this sense, plant-based gene regulation represents an innovative strategy to prevent or modulate human metabolic pathologies, including metabolic syndrome. Here, using a computational and systems biology approach, it was found that carrot microRNAs can modulate key BMPs/SMAD signaling members, C/EBPs, and KLFs involved in several aspects associated with metabolic syndrome, including the hsa04350:TGF-beta signaling pathway, hsa04931:insulin resistance, hsa04152:AMPK signaling pathway, hsa04933:AGE-RAGE signaling pathway in diabetic complications, hsa04010:MAPK signaling pathway, hsa04350:TGF-beta signaling pathway, hsa01522:endocrine resistance, and hsa04910:insulin signaling pathway. These data demonstrated the potential applications of carrot microRNAs as effective food-based therapeutics for obesity and associated metabolic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11112692 | PMC |
http://dx.doi.org/10.1021/acsomega.3c09633 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!