Large language models (LLMs) have shown strong performance in tasks across domains but struggle with chemistry-related problems. These models also lack access to external knowledge sources, limiting their usefulness in scientific applications. We introduce ChemCrow, an LLM chemistry agent designed to accomplish tasks across organic synthesis, drug discovery and materials design. By integrating 18 expert-designed tools and using GPT-4 as the LLM, ChemCrow augments the LLM performance in chemistry, and new capabilities emerge. Our agent autonomously planned and executed the syntheses of an insect repellent and three organocatalysts and guided the discovery of a novel chromophore. Our evaluation, including both LLM and expert assessments, demonstrates ChemCrow's effectiveness in automating a diverse set of chemical tasks. Our work not only aids expert chemists and lowers barriers for non-experts but also fosters scientific advancement by bridging the gap between experimental and computational chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116106 | PMC |
http://dx.doi.org/10.1038/s42256-024-00832-8 | DOI Listing |
J Cannabis Res
January 2025
Laboratori de Botànica (UB), Facultat de Farmàcia i Ciències de l'Alimentació-Institut de Recerca de la Biodiversitat (IRBio), Unitat Associada al CSIC, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, Catalonia, 08028, Spain.
Background: Cannabis sativa L. (Cannabaceae) has been widely used by humans throughout its history for a variety of purposes (medicinal, alimentary and other uses). Armenia, with its rich cultural history and diverse ecosystems, offers a unique context for ethnobotanical research about traditional uses of Cannabis.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Utah Health, 30 N. Mario Capecchi Dr., Level 5 South, Salt Lake City, UT, 84132, USA.
Background: Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR.
Methods: Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not.
Sci Rep
January 2025
Office for the Advancement of Educational Information, Chengdu Normal University, Chengdu, 610000, China.
In the training of teacher students, simulated teaching is a key method for enhancing teaching skills. However, traditional evaluations of simulated teaching typically rely on direct teacher involvement and guidance, increasing teachers' workload and limiting the opportunities for teacher students to practice independently. This paper introduces a Retrieval-Augmented Generation (RAG) framework constructed using various open-source tools (such as FastChat for model inference and Whisper for speech-to-text) combined with a local large language model (LLM) for audio analysis of simulated teaching.
View Article and Find Full Text PDFJ Gen Intern Med
January 2025
Northwell Health, New Hyde Park, NY, USA.
Background: Oropharyngeal dysphagia (dysphagia) is a common (up to 86%) and devastating syndrome in hospitalized older adults with dementia.
Objective: To describe the perspectives of dysphagia management in hospitalized patients with dementia among hospital medicine providers (i.e.
Sci Rep
January 2025
Department of Otolaryngology Head and Neck Surgery, Technical University Munich, Munich, Germany.
Visual diagnosis is one of the key features of squamous cell carcinoma of the oral cavity (OSCC) and oropharynx (OPSCC), both subsets of head and neck squamous cell carcinoma (HNSCC) with a heterogeneous clinical appearance. Advancements in artificial intelligence led to Image recognition being introduced recently into large language models (LLMs) such as ChatGPT 4.0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!