We compare two aerosol surrogate tracers in aircraft cabins for breathing and coughing sources: tracer gas collected in the ACER Boeing 767 mock-up and fluorescent particles collected in an actual Boeing 767 aircraft by the US Transportation Command (TRANSCOM). Each source was located individually in window and middle seats. Exposure generally decreased with source distance. A window seat breathing source resulted in good agreement between datasets for exposure (as percent of release) for the TRANSCOM hangar-AFT testing mode, which corresponds to the 11-row cabin ACER laboratory space. Average tracer gas exposure for a middle seat breathing source was higher in the ACER study than the fluorescent particle tracer exposure in the TRANSCOM study. Using a coughing source in a window seat, the exposure for the TRANSCOM data was higher within the first two rows from the source before decreasing to and tracking with the ACER levels, until increasing after about 5 m away. A similar trend was recorded for a middle seat coughing source with higher overall exposure for the TRANSCOM data. Sources of exposure variation between the studies include particle deposition. This work helps optimize aerosol dispersion research in aircraft cabins and provides some validation to the existing studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11120351 | PMC |
http://dx.doi.org/10.1080/14733315.2023.2290920 | DOI Listing |
Glob Chang Biol
January 2025
Department of Biology, University of Southern Denmark, Odense, Denmark.
The concept of "blue carbon" is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long-term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States.
Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.
View Article and Find Full Text PDFSci Total Environ
January 2025
Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain. Electronic address:
Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.
View Article and Find Full Text PDFNat Commun
January 2025
National Institute of Water and Atmospheric Research (NIWA), 301 Evans Bay Parade, Wellington, 6021, New Zealand.
Hydroxyl (OH) is the atmosphere's main oxidant removing most pollutants including methane. Its short lifetime prevents large-scale direct observational quantification. Abundances inferred using anthropogenic trace gas measurements and models yield conflicting trend estimates.
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
Noble gas transport through geologic media has important applications in the prediction and characterization of measured gas signatures related to underground nuclear explosions (UNEs). Retarding processes such as adsorption can cause significant species fractionation of radionuclide gases, which has implications for measured and predicted signatures used to distinguish radioxenon originating from civilian nuclear facilities or from UNEs. Accounting for the effects of variable water saturation in geologic media on tracer transport is one of the most challenging aspects of modeling gas transport because there is no unifying relationship for the associated tortuosity changes between different rock types, and reactive transport processes such as adsorption that are affected by the presence of water likewise behave differently between gas species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!