A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Necessary for seizure forecasting outcome metrics: seizure frequency and benchmark model. | LitMetric

Work is ongoing to advance seizure forecasting, but the performance metrics used to evaluate model effectiveness can sometimes lead to misleading outcomes. For example, some metrics improve when tested on patients with a particular range of seizure frequencies (SF). This study illustrates the connection between SF and metrics. Additionally, we compared benchmarks for testing performance: a moving average (MA) or the commonly used permutation benchmark. Three data sets were used for the evaluations: (1) Self-reported seizure diaries of 3,994 Seizure Tracker patients; (2) Automatically detected (and sometimes manually reported or edited) generalized tonic-clonic seizures from 2,350 Empatica Embrace 2 and Mate App seizure diary users, and (3) Simulated datasets with varying SFs. Metrics of calibration and discrimination were computed for each dataset, comparing MA and permutation performance across SF values. Most metrics were found to depend on SF. The MA model outperformed or matched the permutation model in all cases. The findings highlight SF's role in seizure forecasting accuracy and the MA model's suitability as a benchmark. This underscores the need for considering patient SF in forecasting studies and suggests the MA model may provide a better standard for evaluating future seizure forecasting models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118655PMC
http://dx.doi.org/10.1101/2024.05.15.24307446DOI Listing

Publication Analysis

Top Keywords

seizure forecasting
16
seizure
9
metrics
6
model
5
forecasting outcome
4
outcome metrics
4
metrics seizure
4
seizure frequency
4
frequency benchmark
4
benchmark model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!