Condensates formed by intrinsically disordered proteins mediate a myriad of cellular processes and are linked to pathological conditions including neurodegeneration. Rules of how different types of amino acids (e.g., π-π pairs) dictate the physical properties of biomolecular condensates are emerging, but our understanding of the roles of different amino acids is far from complete. Here we studied condensates formed by tetrapeptides of the form XXssXX, where X is an amino acid and ss represents a disulfide bond along the backbone. Eight peptides form four types of condensates at different concentrations and pH values: droplets (X = F, L, M, P, V, A); amorphous dense liquids (X = L, M, P, V, A); amorphous aggregates (X = W), and gels (X = I, V, A). The peptides exhibit enormous differences in phase equilibrium and material properties, including a 368-fold range in the threshold concentration for phase separation and a 3856-fold range in viscosity. All-atom molecular dynamics simulations provide physical explanations of these results. The present work also reveals widespread critical behaviors, including critical slowing down manifested by the formation of amorphous dense liquids and critical scaling obeyed by fusion speed, with broad implications for condensate function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118382 | PMC |
http://dx.doi.org/10.1101/2024.05.14.594233 | DOI Listing |
Ergonomics
January 2025
School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.
Age is associated with increased tissue stiffness and a higher risk of low back pain, particularly in older, sedentary workers who spend long periods sitting. This study explored how trunk stiffness changes with age and its relationship with posture during prolonged sitting in a sample of 37 women aged 20-65 years. Age was assessed as both Chronological Age and Fitness Age, with trunk stiffness measured using a passive trunk flexion apparatus.
View Article and Find Full Text PDFCrit Care
January 2025
Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China.
Background: Ulinastatin (UTI), recognized for its anti-inflammatory properties, holds promise for patients undergoing cardiac surgery. This study aimed to investigate the relationship between intraoperative UTI administration and the incidence of delirium following cardiac surgery.
Methods: A retrospective analysis was performed on a retrospective cohort of 6,522 adult cardiac surgery patients to evaluate the relationship between UTI treatment and the incident of postoperative delirium (POD) in patients ongoing cardiac surgery.
Sci Rep
January 2025
LCEA Laboratory, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco.
In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
With the increasing demand on high-density integration and better performance of micro-nano optoelectronic devices, the operation temperatures are expected to significantly increase under some extreme conditions, posing a risk of degradation to metal-based micro-/nano-structured metasurfaces due to their low tolerance to high temperature. Therefore, it is urgent to find new materials with high-conductivity and excellent high-temperature resistance to replace traditional micro-nano metal structures. Herein, we have proposed and fabricated a thermally stable graphene assembly film (GAF), which is calcined at ultra-high temperature (~ 3000 ℃) during the reduction of graphite oxide (GO).
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
Crosslinked thermosets are highly durable materials, but overcoming their petrochemical origins and inability to be recycled poses a grand challenge. Many strategies to access crosslinked polymers that are bioderived or degradable-by-design have been proposed, but they require several resource-intensive synthesis and purification steps and are not yet feasible alternatives to conventional consumer materials. Here we present a modular, one-pot synthesis of degradable thermosets from the commercially available, biosourced monomer 2,3-dihydrofuran (DHF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!