Background: Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase complex, leading to a global reduction and redistributing of the repressive H3 lysine 27 tri-methylation. This rewiring of the epigenome is thought to promote gliomagenesis.

Methods: We established novel, isogenic DMG patient-derived cell lines that have been CRISPR-Cas9 edited to H3.3 WT or H3.3K27M alone and in combination with EZH2 and EZH1 co-deletion, inactivating PRC2 methyltransferase activity of PRC2 and eliminating H3K27me3.

Results: RNA-seq and ATAC-seq analysis of these cells revealed that K27M has a novel epigenetic effect that appears entirely independent of its effects on PRC2 function. While the loss of the PRC2 complex led to a systemic induction of gene expression (including HOX gene clusters) and upregulation of biological pathways, K27M led to a balanced gene deregulation but having an overall repressive effect on the biological pathways. Importantly, the genes uniquely deregulated by the K27M mutation, independent of methylation loss, are closely associated with changes in chromatin accessibility, with upregulated genes becoming more accessible. Notably, the PRC2- independent function of K27M appears necessary for tumorigenesis as xenografts of our H3.3K27M/EZH1/2 WT cells developed into tumors, while H3.3/EZH1/2 KO cells did not.

Conclusion: We demonstrate that K27M mutation alters chromatin accessibility and uniquely deregulates genes, independent of K27 methylation. We further show the mutation's role in altering biological pathways and its necessity for tumor development.

Key Points: We revealed genes regulated by H3.3K27M mutation and PRC2 in DMG.H3.3K27M mutation alters chromosome accessibility independent of H3K27me3.PRC2-independent effects of K27M mutation are crucial for tumor development.

Importance Of The Study: This study is the first to demonstrate that H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independently of H3K27 trimethylation in Diffuse Midline Glioma (DMG). By isolating the effects of H3.3 K27me3 loss from those of the K27M mutation, we identified common and unique genes and pathways affected by each. We found that genes uniquely deregulated by K27M showed increased chromatin accessibility and upregulated gene expression, unlike other gene subsets affected by PRC2 knockout. Importantly, we determined the PRC2-independent function of K27M is also essential for tumorigenesis, as xenografts of H3.3 K27M/PRC2 WT cell lines formed tumors, while H3.3WT/PRC2 WT and K27M/PRC2 knockout cells did not. This research builds upon and advances prior studies, such as those identifying EZH2 as a therapeutic target in H3.3K27M DMGs, by revealing critical new pathways for gliomagenesis. The translational significance lies in identifying novel therapeutic targets against this aggressive pediatric cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118475PMC
http://dx.doi.org/10.1101/2024.05.16.594522DOI Listing

Publication Analysis

Top Keywords

chromatin accessibility
20
k27m mutation
16
diffuse midline
12
midline glioma
12
biological pathways
12
k27m
10
h3f3a k27m
8
k27m mutations
8
repressive transcriptome
8
transcriptome modulating
8

Similar Publications

Identification of assembly mode of non-canonical BAF (ncBAF) chromatin remodeling complex core module.

Biochem Biophys Res Commun

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. Electronic address:

Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes play critical roles in regulating gene expression and DNA accessibility, and more than 20 % of cancers have mutations in genes encoding chromatin remodeling complexes. The mSWI/SNF family comprises three distinct classes: canonical BAF (cBAF), PBAF, and non-canonical BAF (ncBAF). While the structures of cBAF and PBAF have been resolved by using cryo-electron microscopy (cryo-EM), the modular organization and assembly mechanism of ncBAF remain poorly understood.

View Article and Find Full Text PDF

Chemically defined and growth factor-free system for highly efficient endoderm induction of human pluripotent stem cells.

Stem Cell Reports

December 2024

School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China. Electronic address:

Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge.

View Article and Find Full Text PDF

Single-cell analysis of bidirectional reprogramming between early embryonic states identify mechanisms of differential lineage plasticities in mice.

Dev Cell

December 2024

Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA. Electronic address:

Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions.

View Article and Find Full Text PDF

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.

Cell Mol Life Sci

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!