Animals chain movements into long-lived motor strategies, resulting in variability that ultimately reflects the interplay between internal states and environmental cues. To reveal structure in such variability, we build models that bridges across time scales that enable a quantitative comparison of behavioral phenotypes among individuals. Applied to larval zebrafish exposed to diverse sensory cues, we uncover a hierarchy of long-lived motor strategies, dominated by changes in orientation distinguishing cruising and wandering strategies. Environmental cues induce preferences along these modes at the population level: while fish cruise in the light, they wander in response to aversive (dark) stimuli or in search for prey. Our method enables us to encode the behavioral dynamics of each individual fish in the transitions among coarse-grained motor strategies. By doing so, we uncover a hierarchical structure to the phenotypic variability that corresponds to exploration-exploitation trade-offs. Within a wide range of sensory cues, a major source of variation among fish is driven by prior and immediate exposure to prey that induces exploitation phenotypes. However, a large degree of variability is unexplained by environmental cues, pointing to hidden states that override the sensory context to induce contrasting exploration-exploitation phenotypes. Altogether, our approach extracts the timescales of motor strategies deployed during navigation, exposing undiscovered structure among individuals and pointing to internal states tuned by prior experience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118365 | PMC |
http://dx.doi.org/10.1101/2024.05.16.594521 | DOI Listing |
Inactivation of disease alleles by allele-specific editing is a promising approach to treat dominant-negative genetic disorders, provided the causative gene is haplo-sufficient. We previously edited a dominant missense mutation with inactivating frameshifts and rescued disease-relevant phenotypes in induced pluripotent stem cell (iPSC)-derived motor neurons. However, a multitude of different missense mutations cause disease.
View Article and Find Full Text PDFFront Aging Neurosci
December 2024
CHU de Québec-Université Laval Research Center, Neuroscience Axis, Québec City, QC, Canada.
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the degeneration of dopamine neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. While motor symptoms such as rigidity, tremor, bradykinesia/akinesia, and postural instability are well-recognized, non-motor symptoms including cognitive decline, depression, and anxiety also significantly impact patients' quality of life. Preclinical research utilizing animal models has been instrumental in understanding PD pathophysiology and exploring therapeutic interventions.
View Article and Find Full Text PDFChiropr Man Therap
January 2025
Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
Background: Spinal manipulation (MAN) and mobilization (MOB) are biomechanically different yet both elicit pain reduction and increased range of motion. Previous investigations have focused on quantifying kinetics (e.g.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
January 2025
Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea.
Background: Therapeutic options for managing intestinal and hepatic inflammation associated with alcohol consumption, a prevalent health problem worldwide, remain unavailable. This study examines the potential efficacy of polyethylene glycol (PEG) in mitigating the intestinal and hepatic damage, employing a mouse model for assessment.
Methods: First, the mixture of ethanol (4 g/kg body weight) and PEG (2 g/kg body weight) or an equivalent volume of vehicle was administered orally alcohol consumption.
Proc Natl Acad Sci U S A
January 2025
Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
Systematic reviews (SR) synthesize evidence-based medical literature, but they involve labor-intensive manual article screening. Large language models (LLMs) can select relevant literature, but their quality and efficacy are still being determined compared to humans. We evaluated the overlap between title- and abstract-based selected articles of 18 different LLMs and human-selected articles for three SR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!