Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling.

bioRxiv

Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.

Published: May 2024

AI Article Synopsis

  • Human metapneumovirus (HMPV) is a significant cause of respiratory infections in vulnerable populations and evades immune responses through poorly understood viral proteins.
  • The small hydrophobic (SH) protein of HMPV has been identified as a key factor inhibiting IL-6 signaling by promoting the degradation of JAK1, a crucial protein in this signaling pathway.
  • This study shows that the SH protein interacts with JAK1 and contributes to immune evasion by relocating JAK1 to viral replication sites and enhancing its degradation, improving our understanding of HMPV's strategies to thwart immune defenses.

Article Abstract

Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions . HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors , in part by preventing STAT1 phosphorylation. HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling, and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wildtype, but not ΔSH virus, blocked IL-6 mediated STAT3 activation. Further, JAK1 protein (but not RNA) was significantly reduced in cells infected with wildtype but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118450PMC
http://dx.doi.org/10.1101/2024.05.10.593594DOI Listing

Publication Analysis

Top Keywords

il-6 signaling
16
proteasomal degradation
12
human metapneumovirus
8
signaling
8
hmpv infection
8
inhibits il-6
8
signaling inhibition
8
wildtype Δsh
8
Δsh virus
8
degradation jak1
8

Similar Publications

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

The present study investigated the role of the neurotensin/NTS in the modulation of the lipopolysaccharide/LPS induced dysfunction of the sympatho-adrenal-medullary system/SAM using both the NTS receptor 1/NTSR agonist PD149163/PD and antagonist SR48692 /SR. Forty eight mice were maintained in eight groups; Group I/control, Groups II, III, IV, and VII received LPS for 5 days further Group III/IV/VII received PD low dose/PD, PD high dose /PD and SR for 28 days respectively. Group V/VI received similar only PD and PD dose respectively whereas Group VIII was exposed to only SR for 28 days.

View Article and Find Full Text PDF

The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear.

View Article and Find Full Text PDF

Advances in Pharmacological Research on Icaritin: A Comprehensive Review.

Am J Chin Med

January 2025

Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.

has been widely used in traditional Chinese medicine for several thousands of years. This plant is known for tonifying kidney Yang, strengthening muscles and bones, and dispelling wind and dampness. It is worth noting that icaritin, a prenylated flavonoid isolated from , has received increasing attention in recent years due to its wide range of pharmacological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!