Autofluorescence lifetime imaging microscopy (FLIM) is sensitive to metabolic changes in single cells based on changes in the protein-binding activities of the metabolic co-enzymes NAD(P)H. However, FLIM typically relies on time-correlated single-photon counting (TCSPC) detection electronics on laser-scanning microscopes, which are expensive, low-throughput, and require substantial post-processing time for cell segmentation and analysis. Here, we present a fluorescence lifetime-sensitive flow cytometer that offers the same TCSPC temporal resolution in a flow geometry, with low-cost single-photon excitation sources, a throughput of tens of cells per second, and real-time single-cell analysis. The system uses a 375nm picosecond-pulsed diode laser operating at 50MHz, alkali photomultiplier tubes, an FPGA-based time tagger, and can provide real-time phasor-based classification ( ., gating) of flowing cells. A CMOS camera produces simultaneous brightfield images using far-red illumination. A second PMT provides two-color analysis. Cells are injected into the microfluidic channel using a syringe pump at 2-5 mm/s with nearly 5ms integration time per cell, resulting in a light dose of 2.65 J/cm that is well below damage thresholds (25 J/cm at 375 nm). Our results show that cells remain viable after measurement, and the system is sensitive to autofluorescence lifetime changes in Jurkat T cells with metabolic perturbation (sodium cyanide), quiescent vs. activated (CD3/CD28/CD2) primary human T cells, and quiescent vs. activated primary adult mouse neural stem cells, consistent with prior studies using multiphoton FLIM. This TCSPC-based autofluorescence lifetime flow cytometer provides a valuable label-free method for real-time analysis of single-cell function and metabolism with higher throughput than laser-scanning microscopy systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118363PMC
http://dx.doi.org/10.1101/2024.05.15.594394DOI Listing

Publication Analysis

Top Keywords

autofluorescence lifetime
16
lifetime flow
8
cells
8
time cell
8
flow cytometer
8
quiescent activated
8
autofluorescence
4
flow
4
flow cytometry
4
cytometry time-correlated
4

Similar Publications

Multispectral autofluorescence lifetime imaging systems have recently been developed to quickly and non-invasively assess tissue properties for applications in oral cancer diagnosis. As a non-traditional imaging modality, the autofluorescence signal collected from the system cannot be directly visually assessed by a clinician and a model is needed to generate a diagnosis for each image. However, training a deep learning model from scratch on small multispectral autofluorescence datasets can fail due to inter-patient variability, poor initialization, and overfitting.

View Article and Find Full Text PDF

Purpose: assays are essential for studying cellular biology, but traditional monolayer cultures fail to replicate the complex three-dimensional (3D) interactions of cells in living organisms. 3D culture systems offer a more accurate reflection of the cellular microenvironment. However, 3D cultures require robust and unique methods of characterization.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the retinal phenotype in two siblings with new genetic variants linked to hereditary spastic paraplegia type 56 (HSP 56), which resemble type 2 macular telangiectasis (MacTel).
  • - Five family members underwent extensive ophthalmic evaluations and genetic testing, revealing that the affected siblings exhibited specific retinal anomalies, including loss of retinal transparency and abnormal pigment distribution.
  • - The findings suggest a potential connection between the observed retinal issues and the genetic variants, indicating a shared pathway in the development of both MacTel and the hereditary condition.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!