Autofluorescence lifetime imaging microscopy (FLIM) is sensitive to metabolic changes in single cells based on changes in the protein-binding activities of the metabolic co-enzymes NAD(P)H. However, FLIM typically relies on time-correlated single-photon counting (TCSPC) detection electronics on laser-scanning microscopes, which are expensive, low-throughput, and require substantial post-processing time for cell segmentation and analysis. Here, we present a fluorescence lifetime-sensitive flow cytometer that offers the same TCSPC temporal resolution in a flow geometry, with low-cost single-photon excitation sources, a throughput of tens of cells per second, and real-time single-cell analysis. The system uses a 375nm picosecond-pulsed diode laser operating at 50MHz, alkali photomultiplier tubes, an FPGA-based time tagger, and can provide real-time phasor-based classification ( ., gating) of flowing cells. A CMOS camera produces simultaneous brightfield images using far-red illumination. A second PMT provides two-color analysis. Cells are injected into the microfluidic channel using a syringe pump at 2-5 mm/s with nearly 5ms integration time per cell, resulting in a light dose of 2.65 J/cm that is well below damage thresholds (25 J/cm at 375 nm). Our results show that cells remain viable after measurement, and the system is sensitive to autofluorescence lifetime changes in Jurkat T cells with metabolic perturbation (sodium cyanide), quiescent vs. activated (CD3/CD28/CD2) primary human T cells, and quiescent vs. activated primary adult mouse neural stem cells, consistent with prior studies using multiphoton FLIM. This TCSPC-based autofluorescence lifetime flow cytometer provides a valuable label-free method for real-time analysis of single-cell function and metabolism with higher throughput than laser-scanning microscopy systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118363 | PMC |
http://dx.doi.org/10.1101/2024.05.15.594394 | DOI Listing |
Biol Open
November 2024
Western Washington University, 516 High Street, Bellingham WA, USA.
C. elegans gut and cuticle produce a disruptive amount of autofluorescence during imaging. Although C.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
Multispectral autofluorescence lifetime imaging systems have recently been developed to quickly and non-invasively assess tissue properties for applications in oral cancer diagnosis. As a non-traditional imaging modality, the autofluorescence signal collected from the system cannot be directly visually assessed by a clinician and a model is needed to generate a diagnosis for each image. However, training a deep learning model from scratch on small multispectral autofluorescence datasets can fail due to inter-patient variability, poor initialization, and overfitting.
View Article and Find Full Text PDFIn Vitro Model
July 2024
Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR USA.
Purpose: assays are essential for studying cellular biology, but traditional monolayer cultures fail to replicate the complex three-dimensional (3D) interactions of cells in living organisms. 3D culture systems offer a more accurate reflection of the cellular microenvironment. However, 3D cultures require robust and unique methods of characterization.
View Article and Find Full Text PDFCytometry A
December 2024
Department of Physics, King's College London, London, UK.
Ophthalmol Sci
September 2024
Oculogenetic Unit, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!