Glucose-inhibited (GI) neurons of the ventromedial hypothalamus (VMH) depend on neuronal nitric oxide synthase (nNOS) and AMP-activated protein kinase (AMPK) for activation in low glucose. The Lopez laboratory has shown that the effects of estrogen on brown fat thermogenesis and white fat browning require inhibition of VMH AMPK. This effect of estrogen was mediated by downstream lateral hypothalamus (LH) orexin neurons (1,2). We previously showed that estrogen inhibits activation of GI neurons in low glucose by inhibiting AMPK (3). Thus, we hypothesized that VMH AMPK- and nNOS-dependent GI neurons project to and inhibit orexin neurons. Estrogen inhibition of AMPK in GI neurons would then disinhibit orexin neurons and stimulate brown fat thermogenesis and white fat browning, leading to decreased body weight. To test this hypothesis, we reduced VMH nNOS expression using nNOS shRNA in female mice and measured body weight, adiposity, body temperature, white and brown fat uncoupling protein (UCP1; an index of thermogenesis and browning), locomotor activity, and blood glucose levels. Surprisingly, we saw no effect of reduced VMH nNOS expression on body temperature or UCP1. Instead, body weight and adiposity increased by 30% over 2 weeks post injection of nNOS shRNA. This was associated with increased blood glucose levels and decreased locomotor activity. We also found that VMH nNOS-GI neurons project to the LH. However, stimulation of VMH-LH projections increased excitatory glutamate input onto orexin neurons. Thus, our data do not support our original hypothesis. Excitation of orexin neurons has previously been shown to increase physical activity, leading to decreased blood glucose and body weight (4). We now hypothesize that VMH nNOS-GI neurons play a role in this latter function of orexin neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118327 | PMC |
http://dx.doi.org/10.1101/2024.05.15.594324 | DOI Listing |
Anesthesiology
January 2025
Takeda Development Center Americas, Inc., Lexington, MA, USA.
Background: Orexin neuropeptides help regulate sleep/wake states, respiration, and pain. However, their potential role in regulating breathing, particularly in perioperative settings, is not well understood. TAK-925 (danavorexton), a novel, orexin receptor 2-selective agonist, directly activates neurons associated with respiratory control in the brain and improves respiratory parameters in rodents undergoing fentanyl-induced sedation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
Sleep is the most important physiological function of all animals studied to date. Sleep disorders include narcolepsy, which is characterized by excessive daytime sleepiness, disruption of night sleep, and muscle weakness-cataplexy. Narcolepsy is known to be caused by the degeneration of orexin-synthesizing neurons (hypocretin (HCRT) neurons or orexin neurons) in the hypothalamus.
View Article and Find Full Text PDFNeuropeptides
January 2025
Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China. Electronic address:
Traumatic brain injury (TBI) is a life-threatening condition with high incidence and mortality rates. The current pharmacological interventions for TBI exhibit limited efficacy, underscoring the necessity to explore novel and effective therapeutic approaches to ameliorate its impact. Previous studies have indicated that transcranial pulsed current stimulation (tPCS) can improve neurofunctional deficits in patients by modulating brain neuroplasticity.
View Article and Find Full Text PDFFront Nutr
December 2024
Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
Objective: The ventral tegmental area (VTA), a pivotal hub in the brain's reward circuitry, receives inputs from the lateral hypothalamic area (LHA). However, it remains unclear whether melanin-concentrating hormone (MCH) and orexin-A (OX-A) neurons in the LHA exert individual or cooperative influence on palatable food consumption in the VTA. This study aims to investigate the modulatory role of MCH and OX-A in hedonic feeding within the VTA of high-fat diet (HFD) mice.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2025
Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary.
The role of prolactin in sleep regulation has been the subject of extensive research over the past 50 years, resulting in the identification of multiple, disparate functions for the hormone. Prolactin demonstrated a characteristic circadian release pattern with elevation during dark and diminution during light. High prolactin levels were linked to non-rapid eye movement sleep and electroencephalogram delta activity in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!