Backgruound: The diagnostic accuracy of preoperative radiologic findings in predicting the tumor characteristics and clinical outcomes of papillary thyroid microcarcinoma (PTMC) was evaluated across all risk groups.

Methods: In total, 939 PTMC patients, comprising both low-risk and non-low-risk groups, who underwent surgery were enrolled. The preoperative tumor size and lymph node metastasis (LNM) were evaluated by ultrasonography within 6 months before surgery and compared with the postoperative pathologic findings. Discrepancies between the preoperative and postoperative tumor sizes were analyzed, and clinical outcomes were assessed.

Results: The agreement rate between radiological and pathological tumor size was approximately 60%. Significant discrepancies were noted, including an increase in tumor size in 24.3% of cases. Notably, in 10.8% of patients, the postoperative tumor size exceeded 1 cm, despite being initially classified as 0.5 to 1.0 cm based on preoperative imaging. A postoperative tumor size >1 cm was associated with aggressive pathologic factors such as multiplicity, microscopic extrathyroidal extension, and LNM, as well as a higher risk of distant metastasis. In 30.1% of patients, LNM was diagnosed after surgery despite not being suspected before the procedure. This group was characterized by smaller metastatic foci and lower risks of distant metastasis or recurrence than patients with LNM detected both before and after surgery.

Conclusion: Among all risk groups of PTMCs, a subset showed an increase in tumor size, reaching 1 cm after surgery. These cases require special consideration due to their association with adverse clinical outcomes, including an elevated risk of distant metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220223PMC
http://dx.doi.org/10.3803/EnM.2023.1872DOI Listing

Publication Analysis

Top Keywords

tumor size
24
clinical outcomes
16
postoperative tumor
12
distant metastasis
12
diagnostic accuracy
8
accuracy preoperative
8
preoperative radiologic
8
radiologic findings
8
papillary thyroid
8
thyroid microcarcinoma
8

Similar Publications

Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.

View Article and Find Full Text PDF

Patients with recurrent high-grade glioma (rHGG) have a poor prognosis with median progression-free survival (PFS) of <7 months. Responses to treatment are heterogenous, suggesting a clinical need for prognostic models. Bayesian data analysis can exploit individual patient follow-up imaging studies to adaptively predict the risk of progression.

View Article and Find Full Text PDF

Dual-stage optimizer for systematic overestimation adjustment applied to multi-objective genetic algorithms for biomarker selection.

Brief Bioinform

November 2024

School of Medicine, Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 1, PO Box 1627, 70211 Kuopio, Finland.

The selection of biomarker panels in omics data, challenged by numerous molecular features and limited samples, often requires the use of machine learning methods paired with wrapper feature selection techniques, like genetic algorithms. They test various feature sets-potential biomarker solutions-to fine-tune a machine learning model's performance for supervised tasks, such as classifying cancer subtypes. This optimization process is undertaken using validation sets to evaluate and identify the most effective feature combinations.

View Article and Find Full Text PDF

The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Lung cancer, as a serious threat to human health and life, necessitating urgent treatment and intervention. In this study, we prepared hyaluronic acid (HA)-targeted topotecan liposomes for site-specific delivery to tumor cells. The encapsulation efficiency, stability, chemical structure, and morphology of HA-targeted topotecan liposomes were studied, and the release properties, cellular uptake capacity, and therapeutic efficacy of topotecan were further investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!