AI Article Synopsis

  • The endosperm in maize kernels is essential for embryo development and germination, with transfer cells at the base playing a key role in nutrient transport and defense against pathogens.
  • A study identified the ZmMYBR29 transcription factor, which is specifically expressed in the basal endosperm and was shown to impact kernel size and grain filling rate when mutated.
  • The findings suggest that ZmMYBR29 influences kernel weight by regulating genes involved in starch synthesis and carbohydrate metabolism, highlighting its significance in maize endosperm development.

Article Abstract

Background: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled.

Results: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant.

Conclusions: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129368PMC
http://dx.doi.org/10.1186/s12870-024-05163-9DOI Listing

Publication Analysis

Top Keywords

myb-related transcription
12
transcription factor
12
grain filling
12
factor zmmybr29
8
endosperm transfer
8
cell wall
8
wall ingrowths
8
zmmybr29 mutant
8
filling rate
8
genes associated
8

Similar Publications

Comprehensive physiological, transcriptomic, and metabolomic analyses revealed the regulation mechanism of evergreen and cold resistance of Pinus koraiensis needles.

BMC Plant Biol

December 2024

Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China.

As a significant fruit and timber tree species among conifers, Pinus koraiensis remains it evergreen status throughout the harsh winters of the north, a testament to its intricate and prolonged evolutionary adaptation. This study delves into the annual trends of physiological indicators, gene expression levels, and metabolite accumulation to dissect the seasonal adaptability of P. koraiensis needles.

View Article and Find Full Text PDF
Article Synopsis
  • * A total of 100 MYB-related proteins were identified, primarily localized in the nucleus, and mapped across seven chromosomes, with evidence of collinear gene relationships indicating potential evolutionary duplication events.
  • * The study found that Motif 3 is the most conserved across MYB-related genes, and specific treatments with ABA and MeJA can influence gene expression, particularly in petals, indicating a significant role for these factors in flower senescence and growth regulation.
View Article and Find Full Text PDF

Genome-Wide Identification and Stress Responses of Cowpea Thaumatin-like Proteins: A Comprehensive Analysis.

Plants (Basel)

November 2024

Laboratory of Plant Genetics and Biotechnology, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil.

Article Synopsis
  • Cowpea is a vital legume grown in water-limited regions of Africa and America, and its yield is influenced by environmental stresses.
  • Thaumatin-like proteins (TLPs) are linked to plant defense and responses to environmental stresses, and this study analyzed their structural diversity and gene expression in cowpea under various stress conditions.
  • The research identified 34 TLP loci, revealed distinct groups through analysis, and demonstrated that TLPs exhibit functional specialization in response to both biotic and abiotic stress, indicating their potential for biotechnological applications.
View Article and Find Full Text PDF

WD40 protein OsTTG1 promotes anthocyanin accumulation and CBF transcription factor-dependent pathways for rice cold tolerance.

Plant Physiol

December 2024

Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.

Temperature is a critical abiotic factor affecting rice (Oryza sativa L.) yields, and cold stress at the seedling stage can inhibit plant growth or even be fatal. Antioxidants such as anthocyanins accumulate in a variety of plants during cold stress, but the underlying mechanisms are not well understood.

View Article and Find Full Text PDF

Multiomics analysis reveals the involvement of OnDIVARICATA 3 in controlling dynamic flower coloring of Oncidium hybridum.

Plant Physiol Biochem

December 2024

Fujian Engineering Research Center for Characteristic Floriculture, Institute of Crop Sciences, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center), Fuzhou, Fujian, 350013, China. Electronic address:

Flower color is one of the main quality and economic traits of ornamental plants, and a large amount of research on flower color mainly focuses on the differences between varieties, while there were few reports on the change of flower color at different developmental stages. In this study, the metabolome and transcriptome of a new strain 'XM-1' with dynamic color changes of Oncidium were analyzed. The results showed that rutin, quercetin and carotenoids metabolism decreased significantly during the change of color from yellow to white.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!