A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Processing of clinical notes for efficient diagnosis with feedback attention-based BiLSTM. | LitMetric

Predicting a patient's future health state through the analysis of their clinical records is an emerging area in the field of intelligent medicine. It has the potential to assist healthcare professionals in prescribing treatments safely, making more accurate diagnoses, and improving patient care. However, clinical notes have been underutilized due to their complexity, high dimensionality, and sparsity. Nevertheless, these clinical records hold significant promise for enhancing clinical decision. To tackle these problems, a novel feedback attention-based bidirectional long short-term memory (FABiLSTM) model has been proposed for more effective diagnosis using clinical records. This model incorporates PubMedBERT for filtering irrelevant information, enhances global vector word embeddings for numerical representations and K-means clustering, and performs to explore term frequency and inverse document frequency intricacies. The proposed approach excels in capturing information, aiding accurate disease prediction. The predictive capability is further enhanced with the help of a billiards-inspired optimization algorithm. The effectiveness of the FABiLSTM method has been assessed with the MIMIC-III dataset, yielding impressive results in accuracy, precision, F1 score, and recall score of 98.52%, 98%, 98.2%, and 98.2% individually. These results reveal ways in which the proposed technique excels in comparison with current practices.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-024-03126-8DOI Listing

Publication Analysis

Top Keywords

clinical records
12
clinical notes
8
feedback attention-based
8
clinical
5
processing clinical
4
notes efficient
4
efficient diagnosis
4
diagnosis feedback
4
attention-based bilstm
4
bilstm predicting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!