Objective: Nanoparticle-mediated histotripsy (NMH) is a novel ablation method that combines nanoparticles as artificial cavitation nuclei with focused ultrasound pulsing to achieve targeted, non-invasive, and cell-selective tumor ablation. The study described here examined the effect of dual-frequency histotripsy pulsing on the cavitation threshold, bubble cloud characteristics, and ablative efficiency in NMH. High-speed optical imaging was used to analyze bubble cloud characteristics and to measure ablation efficiency for NMH inside agarose tissue phantoms containing perfluorohexane-filled nanocone clusters, which were previously developed to reduce the histotripsy cavitation threshold for NMH.
Methods: Dual-frequency histotripsy pulsing was applied at a 1:1 pressure ratio using a modular 500 kHz and 3 MHz dual-frequency array transducer. Optical imaging results revealed predictable, well-defined bubble clouds generated for all tested cases with similar reductions in the cavitation thresholds observed for single-frequency and dual-frequency pulsing.
Results: Dual-frequency pulsing was seen to nucleate small, dense clouds in agarose phantoms, intermediate in size of their component frequencies but closer in area to that of the higher component frequency. Red blood cell experiments revealed complete ablations were generated by dual-frequency NMH in all phantoms in <1500 pulses. This result was a significant increase in ablation efficiency compared with the ∼4000 pulses required in prior single-frequency NMH studies.
Conclusion: Overall, this study indicates the potential for using dual-frequency histotripsy methods to increase the ablation efficacy of NMH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2024.04.009 | DOI Listing |
Ultrasound Med Biol
August 2024
Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; ICTAS Center for Engineered Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
Objective: Nanoparticle-mediated histotripsy (NMH) is a novel ablation method that combines nanoparticles as artificial cavitation nuclei with focused ultrasound pulsing to achieve targeted, non-invasive, and cell-selective tumor ablation. The study described here examined the effect of dual-frequency histotripsy pulsing on the cavitation threshold, bubble cloud characteristics, and ablative efficiency in NMH. High-speed optical imaging was used to analyze bubble cloud characteristics and to measure ablation efficiency for NMH inside agarose tissue phantoms containing perfluorohexane-filled nanocone clusters, which were previously developed to reduce the histotripsy cavitation threshold for NMH.
View Article and Find Full Text PDFMol Pharm
May 2024
Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey.
Nanocone clusters (NCCs) have been developed as clusters with inclusion complexes of FDA-approved β-cyclodextrin (βCD) and perfluorocarbons (PFC) (i.e., perfluoropentane (PFP) and perfluorohexane (PFH)) and have shown promise in nanoparticle-mediated histotripsy (NMH) applications owing to their lowered cavitation threshold, ease of production, and fluorocarbon quantification.
View Article and Find Full Text PDFBiomacromolecules
December 2022
Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia24061, United States.
Nanocone clusters (NCCs) are new-generation agents of nanoparticle-mediated histotripsy (NMH) recently developed to address the limitations of previously designed nanodroplets (NDs). NCCs can be obtained by simply mixing FDA-approved cyclodextrins (CD) and suitable perfluorocarbons (PFCs), which result in smaller size aggregates, detectable PFC amount, and more stable long-term storage since the obtained powder can be stored and redispersed as needed. Previous experimental and computational studies showed that NCCs consist of an organization of inclusion complexes of CD and PFC around free PFC droplets, and their aggregate behavior depends on the localization of PFC in the cavity and the water solubility of CD derivatives.
View Article and Find Full Text PDFMol Pharm
August 2022
Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey.
Recently developed nanocones (NCs), which are inclusion complexes that are made up of cyclodextrins (CDs) and perfluorocarbons (PFCs), have shown promising results in nanoparticle-mediated histotripsy (NMH) applications due to stable inclusion complexation, PFC quantification, simple synthesis, and processing. FDA-approved βCD and its modified versions such as low-degree methylated βCD have been previously demonstrated as prime examples of structures capable of accommodating PFC molecules. However, the complex formation potential of different CDs with various cavity sizes in the presence of PFC molecules, and their consequent aggregation, needs to be explored.
View Article and Find Full Text PDFACS Omega
February 2019
Department of Biomedical Engineering, School of Engineering and Natural Sciences, and Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul 34810, Turkey.
Histotripsy is a noninvasive and nonthermal ultrasound ablation technique, which mechanically ablates the tissues using very short, focused, high-pressured ultrasound pulses to generate dense cavitating bubble cloud. Histotripsy requires large negative pressures (≥28 MPa) to generate cavitation in the target tissue, guided by real-time ultrasound imaging guidance. The high cavitation threshold and reliance on real-time image guidance are potential limitations of histotripsy, particularly for the treatment of multifocal or metastatic cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!