After transplantation of allogeneic tissues and organs, recognition by recipient T cells of donor MHC molecules initiates the pro-inflammatory adaptive immune response leading to allograft rejection. T cell allorecognition has long been known to be mediated via two distinct pathways: the direct pathway in which T cells recognize intact allogeneic MHC molecules displayed on donor cells and the indirect pathway whereby T cells recognize donor MHC peptides processed and presented by recipient antigen-presenting cells (APCs). It is believed that direct allorecognition is the driving force behind early acute allograft rejection while indirect allorecognition is involved in chronic allograft rejection, a progressive condition characterized by graft vasculopathy and tissue fibrosis. Recently, we and others have reported that after transplantation of allogeneic skin and organs, donor MHC molecules are transferred from donor cells to the host's APCs via trogocytosis or extracellular vesicles. Recipient APCs having captured donor MHC molecules can either present them to T cells in their intact form on their surface (semi-direct pathway) or the form of peptides bound to self-MHC molecules (indirect pathway). The present article provides an overview of recent studies evaluating the role of intercellular exchange of MHC molecules in T cell alloimmunity and its contribution to allograft rejection and tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414654 | PMC |
http://dx.doi.org/10.1016/j.bj.2024.100749 | DOI Listing |
Antigen processing and presentation via major histocompatibility complex (MHC) molecules are central to immune surveillance. Yet, quantifying the dynamic activity of MHC class I and II antigen presentation remains a critical challenge, particularly in diseases like cancer, infection and autoimmunity where these pathways are often disrupted. Current methods fall short in providing precise, sample-specific insights into antigen presentation, limiting our understanding of immune evasion and therapeutic responses.
View Article and Find Full Text PDFBackground Tuberculosis (TB) remains a major cause of global morbidity and mortality. Efforts to control TB are hampered by the lengthy and cumbersome treatment required to eradicate the infection. Bacterial persistence during exposure to bactericidal antibiotics is at least partially mediated by the bacterial stringent response enzyme, Rel .
View Article and Find Full Text PDFGlia
January 2025
Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.
View Article and Find Full Text PDFMol Immunol
January 2025
Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei 430015, PR China. Electronic address:
Purpose: SARS-CoV-2-specific CD8 cytotoxic T lymphocytes (CTLs) are crucial in viral clearance, disease progression, and reinfection control. However, numerous SARS-CoV-2 immunodominant CTL epitopes theoretically are still unidentified due to the genetic polymorphism of human leukocyte antigen class I (HLA-I) molecules.
Methods: The CTL epitopes of SARS-CoV-2 were predicted by the epitope affinity and immunogenicity prediction platforms: the NetMHCpan and the PromPPD.
Vet Sci
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China.
The vesicular stomatitis virus (VSV)-vectored African swine fever virus (ASFV) vaccine can induce efficient immune response, but the potential mechanism remains unsolved. In order to investigate the efficacy of recombinant viruses (VSV-p35, VSV-p72)-mediated dendritic cells (DCs) maturation and the mechanism of inducing T-cell immune response, the functional effects of recombinant viruses on DC activation and target antigens presentation were explored in this study. The results showed that surface-marked molecules (CD80, CD86, CD40, and MHC-II) and secreted cytokines (IL-4, TNF-α, IFN-γ) were highly expressed in the recombinant virus-infected DCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!