Following the B1 dam collapse at Córrego do Feijão Mine, actions were taken to address environmental damage and enhance the quality of water in the Paraopeba River. Natural processes in the river involve gradual reduction of contamination through dispersion and downstream transportation of tailings-a slow, nature-driven process. Dredging, a human intervention, aimed to expedite recovery. Hence, this study aimed to explore dredging's role in reducing contamination in the impacted Paraopeba River zone. Analysis revealed a direct link between dredging and post-collapse turbidity, though recent trends suggest a lessening impact on pre-collapse conditions. Distinct seasonal variations were observed in iron and manganese concentrations, peaking during wet seasons and displaying notable upstream-downstream disparities. An analysis of ratios (downstream/upstream) was conducted to understand and even predict the return to pre-collapse conditions. Wet season averages for iron and manganese decreased by around 90 % over time, with standard deviations reducing by about 48 % and 58 %, respectively. In the dry season, the averages decreased by over 100 %, indicating water quality improvements surpassing pre-collapse levels. Standard deviations also decreased significantly, by approximately 67 % and 79 %, respectively. Employing an exponential decay model revealed that the contribution of dredging in the dry period is negligible, but in the wet period the contribution can be estimated at 28.6 % in the case of iron and 25 % in the case of manganese. While the models performed well based on extensive data, some limitations occur in estimating dredging contribution rates. The model's sensitivity might overlook influential factors, underscoring the importance of considering sediment nature and dredged area extent in understanding water quality dynamics. Despite these potential limitations, this investigation provides crucial insights into the intricate relationship between dredging and water quality in the Paraopeba River. These findings pave the way for future studies aimed at deeper exploration and more accurate assessments of this association.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173407DOI Listing

Publication Analysis

Top Keywords

paraopeba river
16
water quality
12
pre-collapse conditions
8
iron manganese
8
season averages
8
standard deviations
8
dredging
6
river
5
attenuation water
4
water contamination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!