Online monitoring system for qualitative and quantitative analysis of bioaerosols by combined ATP bioluminescence assay with loop-mediated isothermal amplification.

Sci Total Environ

Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.

Published: August 2024

Rapid detection of airborne pathogens is crucial in preventing respiratory infections and allergies. However, technologies aiming to real-time analysis of microorganisms in air remain limited due to the sparse and complex nature of bioaerosols. Here, we introduced an online bioaerosol monitoring system (OBMS) comprised of integrated units including a rotatable stainless-steel sintered filter-based sampler, a lysis unit for extracting adenosine triphosphate (ATP), and a single photon detector-based fluorescence unit. Through optimization of the ATP bioluminescence method and establishment of standard curves between relative luminescence units (RLUs) and ATP as well as microbial concentration, we achieved simultaneous detection of bioaerosols' concentration and activity. Testing OBMS with four bacterial and two fungal aerosols at a sampling flow rate of 10 to 50 L/min revealed an outstanding collection efficiency of 95 % at 30 L/min. A single OBMS measurement takes only 8 min (sampling: 5 min; lysis and detection: 3 min) with detection limits of 3 Pcs/ms photons (2.9 × 10 and 292 CFU/m for Staphylococcus aureus and Candida albicans aerosol). In both laboratory and field tests, OBMS detected higher concentrations of bioaerosol compared to the traditional Andersen impactor and liquid biosampler. When combined OBMS with loop-mediated isothermal amplification (LAMP), the bioaerosol can be qualitative and quantitative analyzed within 40 min without the cumbersome procedures of sample pretreatment and DNA extraction. These results offer a high compressive and humidity resistance membrane filtration sampler and validate the potential of OBMS for online measurement of bioaerosol concentration and composition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173404DOI Listing

Publication Analysis

Top Keywords

monitoring system
8
qualitative quantitative
8
atp bioluminescence
8
loop-mediated isothermal
8
isothermal amplification
8
obms
6
online monitoring
4
system qualitative
4
quantitative analysis
4
analysis bioaerosols
4

Similar Publications

CardiacField: computational echocardiography for automated heart function estimation using two-dimensional echocardiography probes.

Eur Heart J Digit Health

January 2025

Department of Cardiovascular Surgery of Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.

View Article and Find Full Text PDF

Aims: Evidence regarding the safety of early discharge following transcatheter aortic valve implantation (TAVI) is limited. The aim of this study was to evaluate the safety of very early (<24) and early discharge (24-48 h) as compared to standard discharge (>48 h), supported by the implementation of a voice-based virtual assistant using artificial intelligence (AI) and natural language processing.

Methods And Results: Single-arm prospective observational study that included consecutive patients who underwent TAVI in a tertiary hospital in 2023 and were discharged under an AI follow-up programme.

View Article and Find Full Text PDF

Artificial Intelligence in Pediatric Epilepsy Detection: Balancing Effectiveness With Ethical Considerations for Welfare.

Health Sci Rep

January 2025

Department of Research The Medical Research Circle (MedReC) Goma Democratic Republic of the Congo.

Background And Aim: Epilepsy is a major neurological challenge, especially for pediatric populations. It profoundly impacts both developmental progress and quality of life in affected children. With the advent of artificial intelligence (AI), there's a growing interest in leveraging its capabilities to improve the diagnosis and management of pediatric epilepsy.

View Article and Find Full Text PDF

Alexithymia is a psychological trait characterized by difficulty expressing emotions. Previous studies reported that individuals with higher alexithymia have a decreased sense of interoception, which is the sense of monitoring and controlling internal organs. Thus, we hypothesized that internal organ activity (cardiac activities in the present study) was easily affected by false feedback in individuals with severe alexithymia.

View Article and Find Full Text PDF

Introduction: Colorectal cancer (CRC) is one of the most common cancers occurring globally. Surgery for CRC often extends hospital stays due to complications, as patients must meet nutritional needs and regain mobility before discharge. Longer hospital stays, required for extended monitoring and care, can increase the risk of further complications, creating a cycle where extended stays lead to more issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!