Expression and functional analysis of Fushi Tarazu transcription factor 1 (FTZ-F1) in the regulation of steroid hormones during the gonad development of Fujian Oyster, Crassostrea angulata.

Comp Biochem Physiol A Mol Integr Physiol

Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China. Electronic address:

Published: September 2024

Crassostrea angulata, a major shellfish cultivated in Southern China, has experienced a notable surge in commercial value in recent years. Understanding the molecular mechanisms governing their reproductive processes holds significant implications for advancing aquaculture practices. In this study, we cloned the orphan nuclear receptor gene, Fushi Tarazu transcription factor 1 (FTZ-F1), of C. angulata and investigated its functional role in the gonadal development. The full-length cDNA of FTZ-F1 spans 2357 bp and encodes a protein sequence of 530 amino acids. Notably, the amino acid sequence of FTZ-F1 in C. angulata shares remarkable similarity with its homologues in other species, particularly in the DNA-binding region (>90%) and ligand-binding region (>44%). In C. angulata, the highest expression level of FTZ-F1 was observed in the ovary, exhibiting more than a 200-fold increase during the maturation stage compared to the initiation stage (P < 0.001). Specifically, FTZ-F1 was mainly expressed in the follicular cells surrounding the oocytes of C. angulata. Upon inhibiting FTZ-F1 gene expression in C. angulata through RNA interference (RNAi), a substantial reduction in the expression of genes involved in the synthesis of sex steroids in the gonads, including 3β-HSD, Cyp17, and follistatin, was observed. In addition, estradiol (E) and testosterone (T) levels also showed a decrease upon FTZ-F1 silencing, resulting in a delayed gonadal development. These results indicate that FTZ-F1 acts as a steroidogenic factor, participating in the synthesis and regulation of steroid hormones and thus playing an important role in the reproductive and endocrine systems within oysters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2024.111668DOI Listing

Publication Analysis

Top Keywords

fushi tarazu
8
tarazu transcription
8
transcription factor
8
factor ftz-f1
8
crassostrea angulata
8
ftz-f1 angulata
8
ftz-f1
5
angulata
5
expression functional
4
functional analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!