Interactions between polycyclic aromatic hydrocarbons (PAHs) and titanium dioxide (TiO) nanoparticles (NPs) can produce unforeseen photoproducts in the aqueous phase. Both PAHs and TiO-NPs are well-studied and highly persistent environmental pollutants, but the consequences of PAH-TiO-NP interactions are rarely explored. We investigated PAH photoproduct formation over time for benzo[a]pyrene (BaP), fluoranthene (FLT), and pyrene (PYR) in the presence of ultraviolet A (UVA) using a combination of analytical and computational methods including, identification of PAH photoproducts, assessment of expression profiles for gene indicators of PAH metabolism, and computational evaluation of the reaction mechanisms through which certain photoproducts might be formed. Chemical analyses identified diverse photoproducts, but all PAHs shared a primary photoproduct, 9,10-phenanthraquinone (9,10-PQ), regardless of TiO-NP presence. The computed reaction mechanisms revealed the roles photodissociation and singlet oxygen chemistry likely play in PAH mediated photochemical processes that result in the congruent production of 9,10-PQ within this study. Our investigation of PAH photoproduct formation has provided substantial evidence of the many, diverse and congruent, photoproducts formed from physicochemically distinct PAHs and how TiO-NPs influence bioavailability and time-related formation of PAH photoproducts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321274PMC
http://dx.doi.org/10.1016/j.chemosphere.2024.142384DOI Listing

Publication Analysis

Top Keywords

pah photoproduct
12
photoproduct formation
12
pahs tio-nps
8
pah photoproducts
8
reaction mechanisms
8
photoproducts formed
8
pah
7
photoproducts
6
environmental significance
4
significance pah
4

Similar Publications

Interactions between polycyclic aromatic hydrocarbons (PAHs) and titanium dioxide (TiO) nanoparticles (NPs) can produce unforeseen photoproducts in the aqueous phase. Both PAHs and TiO-NPs are well-studied and highly persistent environmental pollutants, but the consequences of PAH-TiO-NP interactions are rarely explored. We investigated PAH photoproduct formation over time for benzo[a]pyrene (BaP), fluoranthene (FLT), and pyrene (PYR) in the presence of ultraviolet A (UVA) using a combination of analytical and computational methods including, identification of PAH photoproducts, assessment of expression profiles for gene indicators of PAH metabolism, and computational evaluation of the reaction mechanisms through which certain photoproducts might be formed.

View Article and Find Full Text PDF

Non-target analysis of crude oil photooxidation products at high latitudes and their biological effects.

Chemosphere

May 2024

Department of Chemistry, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA.

With new oil and gas lease sales in high-latitude regions, there exists a need to better understand the chemical fate of spilled oil and its effects on biological life. To address this need, laboratory simulations of crude oil spills under sub-Arctic conditions were conducted using artificial seawater and exposure to solar irradiation to create Hydrocarbon Oxidation Products (HOPs). HOPs characterization and their biological effects were assessed using ultra high-performance liquid chromatography (UHPLC) with high resolution mass Orbitrap spectrometry and the aryl hydrocarbon receptor (AhR) chemically activated luciferase gene expression (CALUX) assay.

View Article and Find Full Text PDF

Photoreactivity of polycyclic aromatic hydrocarbons (PAHs) and their mechanisms of phototoxicity against human immortalized keratinocytes (HaCaT).

Sci Total Environ

May 2024

Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic compounds in the environment. They are produced by many anthropogenic sources of different origins and are known for their toxicity, carcinogenicity, and mutagenicity. Sixteen PAHs have been identified as Priority Pollutants by the US EPA, which are often associated with particulate matter, facilitating their dispersion through air and water.

View Article and Find Full Text PDF

Ultrafast C-H bond activation and functionalization in confinement using visible light will enable engineering chemical reactions with extraordinary speed and selectivity. To provide a transition metal-free route, here we demonstrate C-H bond activation reactions on poly-aromatic hydrocarbons (PAH) in all-organic cationic nanocage ExBox for the first time. Visible light excitation in the host-guest charge transfer (CT) state allows the formation of oxidized photoproducts with high selectivity.

View Article and Find Full Text PDF

Involvement of type-1 pathway in phototoxicity of benzo[ghi]perylenean ingredient of tattoo ink at ambient exposure of UVR and sunlight.

J Photochem Photobiol B

July 2023

Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226028, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India. Electronic address:

Tattooing on different parts of the body is a very common fashion trend in all sections of society globally. Skin allergies and other related skin diseases are very common among tattoo users. Benzo[ghi]perylene (BP) is a PAH and an important component of tattoo ink that showed prominent absorption under ultraviolet radiation (UVR) region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!