Background: To combat the opioid epidemic, several strategies were implemented to limit the unnecessary prescription of opioids in the postoperative period. However, this leaves a subset of patients who genuinely require additional opioids with inadequate pain control. Deep learning models are powerful tools with great potential of optimizing health care delivery through a patient-centered focus. We sought to investigate whether deep learning models can be used to predict patients who would require additional opioid prescription refills in the postoperative period after elective surgery.
Methods: This is a retrospective study of patients who received elective surgical intervention at the Mayo Clinic. Adult English-speaking patients ≥18 years old, who underwent an elective surgical procedure between 2013 and 2019, were eligible for inclusion. Machine learning models, including deep learning, random forest, and eXtreme Gradient Boosting, were designed to predict patients who require opioid refills after discharge from hospital.
Results: A total of 9,731 patients with mean age of 62.1 years (51.4% female) were included in the study. Deep learning and random forest models predicted patients who required opioid refills with high accuracy, 0.79 ± 0.07 and 0.78 ± 0.08, respectively. Procedure performed, highest pain score recorded during hospitalization, and total oral morphine milligram equivalents prescribed at discharge were the top 3 predictors for requiring opioid refills after discharge.
Conclusion: Deep learning models can be used to predict patients who require postoperative opioid prescription refills with high accuracy. Other machine learning models, such as random forest, can perform equal to deep learning, increasing the applicability of machine learning for combating the opioid epidemic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.surg.2024.03.054 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFPediatr Cardiol
January 2025
Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.
Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Microsc Res Tech
January 2025
AIDA Lab. College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi Arabia.
The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology, University of Missouri, Columbia, Missouri, USA.
Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.
Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!