AI Article Synopsis

  • * Researchers found that 11 out of 17 patients showed symptoms when stimulated, primarily at a median intensity of 4.0 mA, affecting areas like sensory and motor functions.
  • * The results indicate that depth electrodes are more effective in identifying the functions of deep brain structures since they require lower stimulation intensities compared to subdural electrodes.

Article Abstract

Objective: This study investigated the neurologic symptoms and stimulus intensities in the stimulation of deep structures and subcortical fibers with the depth electrodes.

Methods: Seventeen patients with drug-refractory epilepsy who underwent functional brain mapping with the depth electrodes were enrolled. The 50 Hz electrical stimulation was applied, and the diffusion tensor image was used to identify subcortical fibers. The responsible structures and stimulus intensities for the induced neurologic symptoms were evaluated.

Results: Neurologic symptoms were induced in 11 of 17 patients. The opercular stimulation elicited the neurologic symptoms in 6 patients at the median threshold of 4.0 mA (visceral/face/hand sensory, hand/throat motor, negative motor and auditory symptoms). The insular stimulation induced the neurologic symptoms in 4 patients at the median threshold of 4.0 mA (auditory, negative motor, and sensory symptoms). The stimulation of subcortical fibers was induced in 5 of 9 patients at the median threshold of 4.5 mA. The thresholds of depth electrodes were significantly lower than those of subdural electrodes in 8 patients who used both subdural and depth electrodes and induced symptoms with both electrodes.

Conclusions: The stimulation of depth electrodes can identify the function of deep structures and subcortical fibers with lower intensities than subdural electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2024.05.098DOI Listing

Publication Analysis

Top Keywords

depth electrodes
20
neurologic symptoms
20
subcortical fibers
16
patients median
12
median threshold
12
functional brain
8
brain mapping
8
mapping depth
8
symptoms
8
stimulus intensities
8

Similar Publications

Electrographic recording of brain activity through either surface electrodes (electroencephalography, EEG) or implanted electrodes (electrocorticography, ECOG) are valuable research tools in neuroscience across many disciplines, including epilepsy, sleep science and more. Research techniques to perform recordings in rodents are wide-ranging and often require custom parts that may not be readily available. Moreover, the information required to connect individual components is often limited and can therefore be challenging to implement.

View Article and Find Full Text PDF

Objectives: Our study aimed to compare signal characteristics of subdural electrodes (SDE) and depth stereo EEG placed within a 5-mm vicinity in patients with drug-resistant epilepsy. We report how electrode design and placement collectively affect signal content from a shared source between these electrode types.

Methods: In subjects undergoing invasive intracranial EEG evaluation at a surgical epilepsy center from 2012 to 2018, stereo EEG and SDE electrode contacts placed within a 5-mm vicinity were identified.

View Article and Find Full Text PDF

Cochlear Implant Electrode Placement and Music Perception.

JAMA Otolaryngol Head Neck Surg

January 2025

Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.

Importance: Cochlear implants enable improvements in speech perception, but music perception outcomes remain variable. Image-guided cochlear implant programming has emerged as a potential programming strategy for increasing the quality of spectral information delivered through the cochlear implant to improve outcomes.

Objectives: To perform 2 experiments, the first of which modeled the variance in music perception scores as a function of electrode positioning factors, and the second of which evaluated image-guided cochlear implant programming as a strategy to improve music perception with a cochlear implant.

View Article and Find Full Text PDF

Purpose: Pulsed electrical field (PEF) ablation is an energy-based technique used to treat a range of cancers by irreversible electroporation (IRE). Our objective was to use computational and plant-based models to characterize the electric field distribution and ablation zones induced with a commercial 8-needle array-based applicator intended for treatment of skin cancer when high-frequency IRE (H-FIRE) pulses are applied. Electric field characterisation of this device was not previously assessed.

View Article and Find Full Text PDF

For batteries to function effectively all active material must be accessible requiring both electron and ion transport to each particle. A common approach to generating the needed conductive network is the addition of carbon. An alternative approach is the electrochemically induced formation of conductive reaction products generated with intimate contact to the active material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!