Intraoperative Raman spectroscopy (RS) has been identified as a potential tool for surgeons to rapidly and noninvasively differentiate between diseased and normal tissue. Since the previous meta-analysis on the subject was published in 2016, improvements in both spectroscopy equipment and machine learning models used to process spectra may have led to an increase in RS efficacy. Therefore, we decided to conduct a meta-analysis to determine the efficacy of RS when differentiating between glioma tissue and normal brain tissue. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed while conducting this meta-analysis. A search was conducted on PubMed and Web of Science for prospective and retrospective studies published between 2016 and 2022 using intraoperative RS and standard histology methods to differentiate between glioma and normal brain tissue. Meta-analyses of log odds ratios, sensitivity, and specificity were conducted in JASP using the random-effects model with restricted maximum likelihood estimation. A total of 9 studies met our inclusion criteria, comprising 673 patients and 8319 Raman spectra. Meta-analysis of log diagnostic odds ratios revealed high heterogeneity (I = 79.83%) and yielded a back-transformed diagnostic odds ratio of 76.71 (95% confidence interval: 39.57-148.71). Finally, meta-analysis for sensitivity and specificity of RS for glioma tissue showed high heterogeneity (I = 99.37% and 98.21%, respectively) and yielded an overall sensitivity of 95.3% (95% confidence interval: 91.0%-99.6%) and an overall specificity of 71.2% (95% confidence interval: 54.8%-87.6%). Calculation of a summary receiver operating curve yielded an overall area under the curve of 0.9265. Raman spectroscopy represents a promising tool for surgeons to quickly and accurately differentiate between healthy brain tissue and glioma tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2024.05.112DOI Listing

Publication Analysis

Top Keywords

glioma tissue
16
raman spectroscopy
12
brain tissue
12
95% confidence
12
confidence interval
12
tissue
8
tool surgeons
8
published 2016
8
normal brain
8
odds ratios
8

Similar Publications

Introduction: This study discusses the various clinical profiles, investigatory findings, treatment responses, and prognosticating factors in seven cases of autoimmune encephalitis (AE).

Methods: The clinical records of seven AE patients admitted to the Neurology Department, SRM Medical College Hospital and Research Centre, Chennai, from July 2022 to December 2023 were retrospectively analyzed.

Results: The patients' ages ranged from 18 to 35, and all experienced seizures.

View Article and Find Full Text PDF

Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.

Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

New Insight on the Sublethal Effect of Bt-Cry1Ab in (Fabricius): Tissular Distribution of Cry1Ab, Ultrastructural Alterations and the Lysosomal Response.

Insects

December 2024

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.

Bt has been applied as a gene source for insect-resistant transgenic crops, which represents efficient control of insect pests. In this study, we evaluated the pesticidal specificity of one Bt maize strain, DBN9936, that expresses Cry1Ab protein in larvae. The results showed that this Bt maize is active against the younger larvae while causing a sublethal effect on older larvae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!