Identification of the interfacial regions in misfolded transthyretin oligomers.

Biochim Biophys Acta Proteins Proteom

Department of Chemistry, East Carolina University, Greenville, NC 27858, USA. Electronic address:

Published: September 2024

Misfolding and aggregation of transthyretin (TTR) is associated with numerous ATTR amyloidosis. TTR aggregates extracted from ATTR patients consist of not only full-length TTR, but also N-terminally truncated TTR fragments that can be produced by proteolytic cleavage, suggesting the presence of multiple misfolding pathways. Here, we report mechanistic studies of an early stage of TTR aggregation to probe the oligomerization process for the full-length as well as N-terminally truncated TTR. Our kinetic analyses using size exclusion chromatography revealed that amyloidogenic monomers dissociated from wild-type (WT) as well as pathogenic variants (V30M and L55P) form misfolded dimers, which self-assemble into oligomers, precursors of fibril formation. Dimeric interfaces in the full-length misfolded oligomers were investigated by examining the effect of single-point mutations on the two β-strands (F and H). The single-point mutations on the two β-strands (E92P on strand F and T119W on strand H) inhibited the dimerization of misfolded monomers, while the TTR variants can still form native dimers through the same F and H strands. These results suggest that the two strands are involved in intermolecular associations for both native and misfolded dimers, but detailed intermolecular interactions are different in the two forms of dimers. In the presence of a proteolytic enzyme, TTR aggregation is greatly accelerated. The two mutations on the two β-strands, however, inhibited TTR aggregation even in the presence of a proteolytic enzyme, trypsin. These results suggest that the two β-strands (F and H) play a critical role in aggregation of the N-terminally truncated TTR as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283945PMC
http://dx.doi.org/10.1016/j.bbapap.2024.141027DOI Listing

Publication Analysis

Top Keywords

n-terminally truncated
12
truncated ttr
12
ttr aggregation
12
mutations β-strands
12
ttr
10
misfolded dimers
8
single-point mutations
8
presence proteolytic
8
proteolytic enzyme
8
misfolded
5

Similar Publications

Influenza A viruses are responsible for human seasonal epidemics and severe animal pandemics with a risk of zoonotic transmission to humans. The viral segmented RNA genome is encapsidated by nucleoproteins (NP) and attached to the heterotrimeric polymerase, forming the viral ribonucleoproteins (vRNPs). Flexible helical vRNPs are central for viral transcription and replication.

View Article and Find Full Text PDF

The 1.3 Å resolution structure of the truncated group Ia type IV pilin from Pseudomonas aeruginosa strain P1.

Acta Crystallogr D Struct Biol

December 2024

Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.

The type IV pilus is a diverse molecular machine capable of conferring a variety of functions and is produced by a wide range of bacterial species. The ability of the pilus to perform host-cell adherence makes it a viable target for the development of vaccines against infection by human pathogens such as Pseudomonas aeruginosa. Here, the 1.

View Article and Find Full Text PDF

Key determinants of the dual clamp/activator function of Complexin.

Elife

November 2024

Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of Saarland, Homburg, Germany.

Complexin determines magnitude and kinetics of synchronized secretion, but the underlying molecular mechanisms remained unclear. Here, we show that the hydrophobic face of the amphipathic helix at the C-terminus of Complexin II (CpxII, amino acids 115-134) binds to fusion-promoting SNARE proteins, prevents premature secretion, and allows vesicles to accumulate in a release-ready state in mouse chromaffin cells. Specifically, we demonstrate that an unrelated amphipathic helix functionally substitutes for the C-terminal domain (CTD) of CpxII and that amino acid substitutions on the hydrophobic side compromise the arrest of the pre-fusion intermediate.

View Article and Find Full Text PDF

Aims/hypothesis: Wolfram syndrome 1 (WS1) is an inherited condition mainly manifesting in childhood-onset diabetes mellitus and progressive optic nerve atrophy. The causative gene, WFS1, encodes wolframin, a master regulator of several cellular responses, and the gene's mutations associate with clinical variability. Indeed, nonsense/frameshift variants correlate with more severe symptoms than missense/in-frame variants.

View Article and Find Full Text PDF

Regulated Proteolysis Induces Aberrant Phase Transition of Biomolecular Condensates into Aggregates: A Protective Role for the Chaperone Clusterin.

J Mol Biol

December 2024

Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany. Electronic address:

Several proteins associated with neurodegenerative diseases, such as the mammalian prion protein (PrP), undergo liquid-liquid phase separation (LLPS), which led to the hypothesis that condensates represent precursors in the formation of neurotoxic protein aggregates. However, the mechanisms that trigger aberrant phase separation are incompletely understood. In prion diseases, protease-resistant and infectious amyloid fibrils are composed of N-terminally truncated PrP, termed C2-PrP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!