Background And Objective: Deep vein thrombosis (DVT) is a common complication after trauma and mostly without specific symptoms. Timely diagnosis and early appropriate treatment measures can prevent further development of thrombosis for patients with traumatic lower extremity fractures. Although extracellular vesicles (EVs) are confirmed as promising disease biomarkers, little is known about the role of altered levels and composition in the diagnosis of post-traumatic DVT.
Method: The levels of circulating EVs subgroups were measured using flow cytometry. Isolated EVs were characterized and subjected to proteomics analysis to screen for differentially expressed proteins (DEPs) between DVT and non-DVT patients. Regularized logistic regression analysis based on L2 penalty terms using R's caret package was applied to build a model for DVT diagnosis.
Results: Compared to non-DVT patients, DVT patients had higher circulating hepatocyte-derived EVs (hEVs) with good predictive value for post-traumatic DVT diagnosis. The results of the proteomic analysis showed that differentially expressed proteins (DEPs) of circulating EVs between the DVT group and non-DVT group were enriched in the complement and coagulation cascade. Finally, an integrated model of five biomarkers including SERPING1, C8G, CFH, FIX, and hEVs level was established for post-traumatic DVT diagnosis with robust identification of the traumatic patients with and without DVT (AUC 0.972).
Conclusion: Post-traumatic DVT patients had changed levels and composition of circulating EVs compared to non-DVT patients and healthy controls. Circulating EVs may acquire pathological protein signatures and become potential biomarkers for identifying subjects' post-traumatic DVT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cca.2024.119721 | DOI Listing |
Mol Oncol
January 2025
Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy.
Extracellular vesicle (EV) monitoring can complement clinical assessment of cancer response. In this study, patients with advanced non-small cell lung cancer (NSCLC) undergoing osimertinib, alectinib, pembrolizumab or platinum-based chemotherapy ± pembrolizumab were enrolled. EVs were characterized using Bradford assay to quantify the circulating cell-free EV protein content (cfEV), and dynamic light scattering to assess Rayleigh ratio excess at 90°, z-averaged hydrodynamic diameter and polydispersity index.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States.
Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China.
Unlabelled: Platelet factor 4 (PF4) has been shown to regulate several viral infections. Our previous study demonstrated that PF4 inhibits the entry of enterovirus A 71 (EV71) and coxsackievirus A16 (CA16), which cause hand, foot, and mouth disease (HFMD). In this study, we report that PF4 also inhibits the circulating HFMD pathogen coxsackievirus A6 (CA6) and the re-emerging enterovirus D68 (EVD68).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain.
Circulating microRNAs (miRNAs), especially transported by extracellular vesicles (EVs), have recently emerged as major new participants in interorgan communication, playing an important role in the metabolic coordination of our tissues. Among these, adipose tissue displays an extraordinary ability to secrete a vast list of EV-carried miRNAs into the circulation, representing new hormone-like factors. Despite the limitations of current methodologies for the unequivocal identification of the origin and destination of EV-carried miRNAs in vivo, recent investigations clearly support the important regulatory role of adipose-derived circulating miRNAs in shaping the metabolism and function of other tissues including the liver, muscle, endocrine pancreas, cardiovascular system, gastrointestinal tract, and brain.
View Article and Find Full Text PDFCells
December 2024
Division of Neonatology, Department of Pediatrics, Batchelor Children Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA.
Extremely premature infants are at significant risk for developing bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment (NDI). Although BPD is a predictor of poor neurodevelopmental outcomes, it is currently unknown how BPD contributes to brain injury and long-term NDI in pre-term infants. Extracellular vesicles (EVs) are small, membrane-bound structures released from cells into the surrounding environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!