Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Sleep disorders, depression, and Alzheimer's disease (AD) are extensively reported as comorbidity. Although neuroinflammation triggered by microglial phenotype M1 activation, leading to neurotransmitter dysfunction and Aβ aggregation, is considered as the leading cause of depression and AD, whether and how sub-chronic or chronic sleep deprivation (SD) contribute to the onset and development of these diseases remains unclear.
Methods: Memory and depression-like behaviors were evaluated in both SDs, and then circadian markers, glial cell phenotype polarization, cytokines, depression-related neurotransmitters, and AD-related gene/protein expressions were measured by qRT-PCR, enzyme-linked immunosorbent assay, high-performance liquid chromatography, and western-blotting respectively.
Results: Both SDs induced give-up behavior and anhedonia and increased circadian marker period circadian regulator 2 (PER2) expression, which were much worse in chronic than in the sub-chronic SD group, while brain and muscle ARNT-like protein-1 only decreased in the chronic-SD. Furthermore, increased microglial M1 and astrocyte A1 expression and proinflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α was observed in both SDs, which were more significant in chronic SD. Similarly, decreased norepinephrine and 5-hydroxytryptamine/5-hydroxyindoleacetic acid ratio were more significant, which corresponds to the worse depression-like behavior in chronic than sub-chronic-SD. With regard to AD, increased amyloid precursor protein (APP) and soluble (s)-APPβ and decreased sAPPα in both SDs were more significant in the chronic. However, sAPPα/sAPPβ ratio was only decreased in chronic SD.
Conclusion: These findings suggest that both SDs induce depression-like changes by increasing PER2, leading to neuroinflammation and neurotransmitter dysfunction. However, only chronic SD induced memory impairment likely due to severer circadian disruption, higher neuroinflammation, and dysregulation of APP metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2024.115067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!