Introduction: Ischemia/reperfusion is a pathological condition by the restoration of perfusion and oxygenation following a period of restricted blood flow to an organ. To address existing uncertainty in the literature regarding the effects of 3', 4'-dihydroxy flavonol (DiOHF) on cerebral ischemia/reperfusion injury, our study aims to investigate the impact of DiOHF on neurological parameters, apoptosis (Caspase-3), aquaporin 4 (AQP4), and interleukin-10 (IL-10) levels in an experimental rat model of brain ischemia-reperfusion injury.
Materials/methods: A total of 28 Wistar-albino male rats were used in this study. Experimental groups were formed as 1-Control, 2-Sham, 3-Ischemia-reperfusion, 4-Ischemia-reperfusion + DiOHF (10 mg/kg). The animals were anaesthetized, and the carotid arteries were ligated (ischemia) for 30 min, followed by reperfusion for 30 min. Following reperfusion, DiOHF was administered intraperitoneally to the animals at a dose of 10 mg/kg for 1 week. During the one-week period neurological scores and new object recognition tests were performed. Then, caspase 3 and AQP4 levels were determined by PCR method and IL-10 by ELISA method in hippocampus tissue samples taken from animals sacrificed under anaesthesia.
Results: Brain ischemia reperfusion significantly increased both caspase 3 and AQP4 values in the hippocampus tissue, while decreasing IL-10 levels. However, 1-week DiOHF supplementation significantly suppressed increased caspase 3 and AQP4 levels and increased IL-10 values. While I/R also increased neurological score values, it suppressed the ability to recognize new objects, and the administered treatment effectively ameliorated the adverse effects observed, resulting in a positive outcome.
Conclusions: The results of the study show that brain ischemia caused by bilateral carotid occlusion in rats and subsequent reperfusion causes tissue damage, but 1-week DiOHF application has a healing effect on both hippocampus tissue and neurological parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2024.176670 | DOI Listing |
J Neurochem
January 2025
Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
Sci Rep
September 2024
Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
No single treatment significantly reduces the mortality rate and improves neurological outcomes after intracerebral haemorrhage (ICH). New evidence suggests that pyroptosis-specific proteins are highly expressed in the perihaematomal tissues of patients with ICH and that the disulfiram (DSF) inhibits pyroptosis. An ICH model was established in C57BL/6 mice by intracranial injection of collagenase, after which DSF was used to treat the mice.
View Article and Find Full Text PDFInflammation
August 2024
Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
Eur J Pharmacol
August 2024
Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey.
Introduction: Ischemia/reperfusion is a pathological condition by the restoration of perfusion and oxygenation following a period of restricted blood flow to an organ. To address existing uncertainty in the literature regarding the effects of 3', 4'-dihydroxy flavonol (DiOHF) on cerebral ischemia/reperfusion injury, our study aims to investigate the impact of DiOHF on neurological parameters, apoptosis (Caspase-3), aquaporin 4 (AQP4), and interleukin-10 (IL-10) levels in an experimental rat model of brain ischemia-reperfusion injury.
Materials/methods: A total of 28 Wistar-albino male rats were used in this study.
Acta Med Okayama
April 2024
Department of Physiology2, Kawasaki Medical School.
Brain edema causes abnormal fluid retention and can be fatal in severe cases. Although it develops in various diseases, most treatments for brain edema are classical. We analyzed the impacts of age and gender on the characteristics of a water intoxication model that induces pure brain edema in mice and examined the model's usefulness for research regarding new treatments for brain edema.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!