Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179439 | PMC |
http://dx.doi.org/10.1016/j.cell.2024.05.005 | DOI Listing |
Lipids Health Dis
January 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.
Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.
Mol Med
January 2025
Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark.
Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!